Skip to main content

Advertisement

Log in

Municipal Park Grounds and Microplastics Contamination

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The presence of microplastics (MPs) in different terrestrial ecosystems has adverse effects on planet biota and even on humans in the long term. However, few studies evaluate areas with a high circulation of people, such as parks. This work aimed to carry out a comparative study between the municipal landfill and one park in Santo André (SP), Brazil, seeking to prove their presence and establish the types of plastics found in these environments, exploring the correlation between them. For that, different sites at the park were selected, and soil was collected from the surface and 20 cm depth. The samples were characterized by optical microscopy and Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, and MPs abundancy and the results were compared with landfill soil as standard. Results indicated the presence of microplastics in the park soil in different morphologies, such as fragments and fibers, and degradation characteristics. The FTIR indicated the presence of polypropylene, polyethylene terephthalate, and polyethylene, with an abundance of 1401 items kg−1 for the park and 2393 items kg−1 in the landfill, indicating that parks have high amounts of MPs in the soil, like landfills, being a source of contaminants with risk of toxicity. This work established a correlation between regions with a higher flow of people and, consequently, more significant maintenance and cleaning, with a lower frequency of microplastics, and regions with a lower flow of people, such as places with more vegetation, where the incorrect disposal of solid waste results in a higher frequency of microplastics with characteristics of degradation by weathering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hale RC, Seeley ME, La Guardia MJ, Mai L, Zeng EY (2020) A global perspective on microplastics. J Geophys Res Ocean 125:1–40. https://doi.org/10.1029/2018JC014719

    Article  Google Scholar 

  2. Shen M, Song B, Zeng G, Zhang Y, Huang W, Wen X, Tang W (2020) Are biodegradable plastics a promising solution to solve the global plastic pollution? Environ Pollut 263:114469. https://doi.org/10.1016/j.envpol.2020.114469

    Article  CAS  PubMed  Google Scholar 

  3. Büks F, Kaupenjohann M (2020) Global concentrations of microplastics in soils–a review. Soil 6:649–662. https://doi.org/10.5194/soil-6-649-2020

    Article  Google Scholar 

  4. Helcoski R, Yonkos LT, Sanchez A, Baldwin AH (2020) Wetland soil microplastics are negatively related to vegetation cover and stem density. Environ Pollut 256:113391. https://doi.org/10.1016/j.envpol.2019.113391

    Article  CAS  PubMed  Google Scholar 

  5. Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3:e1700782. https://doi.org/10.1126/sciadv.1700782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Guo JJ, Huang XP, Xiang L, Wang YZ, Li YW, Li H, Cai QY, Mo CH, Wong MH (2020) Source, migration and toxicology of microplastics in soil. Environ Int 137:105263. https://doi.org/10.1016/j.envint.2019.105263

    Article  CAS  PubMed  Google Scholar 

  7. De Souza Machado AA, Lau CW, Kloas W, Bergmann J, Bachelier JB, Faltin E, Becker R, Görlich AS, Rillig MC (2019) Microplastics can change soil properties and affect plant performance. Environ Sci Technol 53:6044–6052. https://doi.org/10.1021/acs.est.9b01339

    Article  CAS  PubMed  Google Scholar 

  8. Machado AAS, Lau CW, Till J, Kloas W, Lehmann A, Becker R, Rillig MC (2018) Impacts of microplastics on the soil biophysical environment. Environ Sci Technol 52:9656–9665. https://doi.org/10.1021/acs.est.8b02212

    Article  CAS  Google Scholar 

  9. Chai B, Wei Q, She Y, Lu G, Dang Z, Yin H (2020) Soil microplastic pollution in an e-waste dismantling zone of China. Waste Manag 118:291–301. https://doi.org/10.1016/j.wasman.2020.08.048

    Article  CAS  PubMed  Google Scholar 

  10. Zhou B, Wang J, Zhang H, Shi H, Fei Y, Huang S, Tong Y, Wen D, Luo Y, Barceló D (2020) Microplastics in agricultural soils on the coastal plain of Hangzhou Bay, east China: multiple sources other than plastic mulching film. J Hazard Mater 388:121814. https://doi.org/10.1016/j.jhazmat.2019.121814

    Article  CAS  PubMed  Google Scholar 

  11. Rodriguez-Seijo A, Lourenço J, Rocha-Santos TAP, da Costa J, Duarte AC, Vala H, Pereira R (2017) Histopathological and molecular effects of microplastics in Eisenia andrei Bouché. Environ Pollut 220:495–503. https://doi.org/10.1016/j.envpol.2016.09.092

    Article  CAS  PubMed  Google Scholar 

  12. Cao D, Wang X, Luo X, Liu G, Zheng H (2017) Effects of polystyrene microplastics on the fitness of earthworms in an agricultural soil. IOP Conf Ser Earth Environ Sci 61:3–7. https://doi.org/10.1088/1755-1315/61/1/012148

    Article  Google Scholar 

  13. Sajjad M, Huang Q, Khan S, Khan MA, Liu Y, Wang J, Lian F, Wang Q, Guo G (2022) Microplastics in the soil environment: a critical review. Environ Technol Innov 27:102408. https://doi.org/10.1016/j.eti.2022.102408

    Article  CAS  Google Scholar 

  14. Yan Y, Zhu F, Zhu C, Chen Z, Liu S, Wang C, Gu C (2021) Dibutyl phthalate release from polyvinyl chloride microplastics: influence of plastic properties and environmental factors. Water Res 204:117597. https://doi.org/10.1016/j.watres.2021.117597

    Article  CAS  PubMed  Google Scholar 

  15. Hüffer T, Metzelder F, Sigmund G, Slawek S, Schmidt TC, Hofmann T (2019) Polyethylene microplastics influence the transport of organic contaminants in soil. Sci Total Environ 657:242–247. https://doi.org/10.1016/j.scitotenv.2018.12.047

    Article  CAS  PubMed  Google Scholar 

  16. He D, Bristow K, Filipović V, Lv J, He H (2020) Microplastics in terrestrial ecosystems: a scientometric analysis. Sustain 12:1–15. https://doi.org/10.3390/su12208739

    Article  Google Scholar 

  17. Wong JKH, Lee KK, Tang KHD, Yap PS (2020) Microplastics in the freshwater and terrestrial environments: prevalence, fates, impacts and sustainable solutions. Sci Total Environ 719:137512. https://doi.org/10.1016/j.scitotenv.2020.137512

    Article  CAS  PubMed  Google Scholar 

  18. Li R, Liu Y, Sheng Y, Xiang Q, Zhou Y, Cizdziel JV (2020) Effect of prothioconazole on the degradation of microplastics derived from mulching plastic film: apparent change and interaction with heavy metals in soil. Environ Pollut 260:113988. https://doi.org/10.1016/j.envpol.2020.113988

    Article  CAS  PubMed  Google Scholar 

  19. Li Q, Wu J, Zhao X, Gu X, Ji R (2019) Separation and identification of microplastics from soil and sewage sludge. Environ Pollut 254:113076. https://doi.org/10.1016/j.envpol.2019.113076

    Article  CAS  PubMed  Google Scholar 

  20. Shim WJ, Hong SH, Eo SE (2017) Identification methods in microplastic analysis: a review. Anal Methods 9:1384–1391. https://doi.org/10.1039/c6ay02558g

    Article  CAS  Google Scholar 

  21. Liu M, Lu S, Song Y, Lei L, Hu J, Lv W, Zhou W, Cao C, Shi H, Yang X, He D (2018) Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai China. Environ Pollut 242:855–862. https://doi.org/10.1016/j.envpol.2018.07.051

    Article  CAS  PubMed  Google Scholar 

  22. Pirsaheb M, Hossini H, Makhdoumi P (2020) Review of microplastic occurrence and toxicological effects in marine environment: experimental evidence of inflammation. Process Saf Environ Prot 142:1–14. https://doi.org/10.1016/j.psep.2020.05.050

    Article  CAS  Google Scholar 

  23. Canopoli L, Coulon F, Wagland ST (2020) Degradation of excavated polyethylene and polypropylene waste from landfill. Sci Total Environ 698:134125. https://doi.org/10.1016/j.scitotenv.2019.134125

    Article  CAS  PubMed  Google Scholar 

  24. Zhang K, Hamidian AH, Tubić A, Zhang Y, Fang JKH, Wu C, Lam PKS (2021) Understanding plastic degradation and microplastic formation in the environment: a review. Environ Pollut. https://doi.org/10.1016/j.envpol.2021.116554

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhang M, Zhao Y, Qin X, Jia W, Chai L, Huang M, Huang Y (2019) Microplastics from mulching film is a distinct habitat for bacteria in farmland soil. Sci Total Environ 688:470–478. https://doi.org/10.1016/j.scitotenv.2019.06.108

    Article  CAS  PubMed  Google Scholar 

  26. Fan C, Huang YZ, Lin JN, Li J (2021) Microplastic constituent identification from admixtures by fourier-transform infrared (FTIR) spectroscopy: the use of polyethylene terephthalate (PET), polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC) and nylon (NY) as the model constituent. Environ Technol Innov 23:101798. https://doi.org/10.1016/j.eti.2021.101798

    Article  CAS  Google Scholar 

  27. Tirkey A, Upadhyay LSB (2021) Microplastics: an overview on separation, identification and characterization of microplastics. Mar Pollut Bull 170:112604. https://doi.org/10.1016/j.marpolbul.2021.112604

    Article  CAS  PubMed  Google Scholar 

  28. Ding L, Zhang S, Wang X, Yang X, Zhang C, Qi Y, Guo X (2020) The occurrence and distribution characteristics of microplastics in the agricultural soils of Shaanxi Province, in north-western China. Sci Total Environ 720:137525. https://doi.org/10.1016/j.scitotenv.2020.137525

    Article  CAS  PubMed  Google Scholar 

  29. Zhang L, Xie Y, Liu J, Zhong S, Qian Y, Gao P (2020) An overlooked entry pathway of microplastics into agricultural soils from application of sludge-based fertilizers. Environ Sci Technol 54:4248–4255. https://doi.org/10.1021/acs.est.9b07905

    Article  CAS  PubMed  Google Scholar 

  30. Zhang GS, Liu YF (2018) The distribution of microplastics in soil aggregate fractions in southwestern China. Sci Total Environ 642:12–20. https://doi.org/10.1016/j.scitotenv.2018.06.004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by Fundação de Amparo à Pesquisa do Estado de São Paulo (2020/13703-3, 2021/08296–2) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (305819/2017-8). The authors thank the CAPES (Code 001), UFABC, and REVALORES Strategic Unit.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derval dos Santos Rosa.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 2017 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes, E.M.S., de Souza, A.G., Barbosa, R.F.d.S. et al. Municipal Park Grounds and Microplastics Contamination. J Polym Environ 30, 5202–5210 (2022). https://doi.org/10.1007/s10924-022-02580-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02580-5

Keywords

Navigation