Skip to main content
Log in

Study on Adsorption Performance of MgO/Calcium Alginate Composite for Congo Red in Wastewater

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This research prepared a poly-functional material which has outstanding adsorption performance and easily recyclable for Congo red dye removal. The multifunctional gel yarn composed of calcium alginate and nano-magnesium oxide was prepared by wet spinning. For the morphology and structure of MgO/CA composite, the compound product was characterized by Field Emission Scanning Electron Microscope (FE-SEM), Fourier Transform infrared spectroscopy (FTIR) and Thermogravimetric analysis (TGA). Then, the adsorption performance of MgO/CA aerogel for Congo red was studied, including the influence of four factors (adsorbent dosage, pH, initial concentration, contact time), adsorption isotherm, adsorption kinetics and adsorption thermodynamics. The results show that the adsorption properties of MgO/CA aerogel on Congo red largely depend on these factors. The best contact time for MgO/CA aerogel to remove Congo red is 24 h. Besides, the maximum adsorption capacity of the adsorbents is usually very high (312.5, 322.6 and 344.8 mg/g at 303, 313 and 323 K, respectively). The adsorption kinetics can be best described by a pseudo second-order reaction, and the adsorption data agree well with the Langmuir model. Thermodynamic parameters including the changes in entropy (ΔS0), free energy (ΔG0) and enthalpy (ΔH0), and stated that adsorption by the MgO/CA aerogel was endothermic and spontaneous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Shahid M, Shahid ul I, Mohammad F (2013) Recent advancements in natural dye applications: a review. J Clean Prod 53:310–331. https://doi.org/10.1016/j.jclepro.2013.03.031

    Article  CAS  Google Scholar 

  2. Gupta VK, Suhas (2009) Application of low-cost adsorbents for dye removal—a review. J Environ Manag 90(8):2313–2342. https://doi.org/10.1016/j.jenvman.2008.11.017

    Article  CAS  Google Scholar 

  3. Mirzajani R, Bagheban M (2016) Simultaneous preconcentration and determination of malachite green and fuchsine dyes in seafood and environmental water samples using nano-alumina-based molecular imprinted polymer solid-phase extraction. Int J Environ Anal Chem 96(6):576–594. https://doi.org/10.1080/03067319.2016.1172215

    Article  CAS  Google Scholar 

  4. Biesinger MC, Payne BP, Lau LWM, Gerson A, Smart RSC (2009) X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems. Surf Interface Anal 41(4):324–332. https://doi.org/10.1002/sia.3026

    Article  CAS  Google Scholar 

  5. Zhang R, Zhang J, Zhang X, Dou C, Han R (2014) Adsorption of Congo red from aqueous solutions using cationic surfactant modified wheat straw in batch mode: kinetic and equilibrium study. J Taiwan Inst Chem Eng 45(5):2578–2583. https://doi.org/10.1016/j.jtice.2014.06.009

    Article  CAS  Google Scholar 

  6. Zhang XP, Li YH, Li MX, Zheng H, Du QJ, Li H, Wang YQ, Wang DC, Wang CP, Sui KY, Li HL, Xia YZ (2020) Removal of methylene blue from aqueous solution using high performance calcium alginate/activated carbon membrane. Int J Cloth Sci Technol 32(3):307–321. https://doi.org/10.1108/ijcst-03-2019-0044

    Article  Google Scholar 

  7. Xing R, Wang W, Jiao T, Ma K, Zhang Q, Hong W, Qiu H, Zhou J, Zhang L, Peng Q (2017) Bioinspired polydopamine sheathed nanofibers containing carboxylate graphene oxide nanosheet for high-efficient dyes scavenger. ACS Sustain Chem Eng 5(6):4948–4956. https://doi.org/10.1021/acssuschemeng.7b00343

    Article  CAS  Google Scholar 

  8. Zhu S, Asim Khan M, Wang F, Bano Z, Xia M (2020) Rapid removal of toxic metals Cu2+ and Pb2+ by amino trimethylene phosphonic acid intercalated layered double hydroxide: a combined experimental and DFT study. Chem Eng J. https://doi.org/10.1016/j.cej.2019.123711

    Article  PubMed  PubMed Central  Google Scholar 

  9. Valarmathi M, Gomathi A, Manisankar P (2013) Enhanced sensing of anthraquinone dyes using multiwalled carbon nanotubes modified electrode. Int J Environ Anal Chem 93(3):349–363. https://doi.org/10.1080/03067319.2011.629348

    Article  CAS  Google Scholar 

  10. Altun T, Ecevit H (2020) Cr(VI) removal using Fe2O3-chitosan-cherry kernel shell pyrolytic charcoal composite beads. Environ Eng Res 25(3):426–438. https://doi.org/10.4491/eer.2019.112

    Article  Google Scholar 

  11. Ghorpade A, Ahammed MM (2018) Water treatment sludge for removal of heavy metals from electroplating wastewater. Environ Eng Res 23(1):92–98. https://doi.org/10.4491/eer.2017.065

    Article  Google Scholar 

  12. Xu H, Zhu S, Xia M, Wang F (2021) Rapid and efficient removal of diclofenac sodium from aqueous solution via ternary core-shell CS@PANI@LDH composite: experimental and adsorption mechanism study. J Hazard Mater 402:123815. https://doi.org/10.1016/j.jhazmat.2020.123815

    Article  CAS  PubMed  Google Scholar 

  13. Wang SB, Li H, Xu LY (2006) Application of zeolite MCM-22 for basic dye removal from wastewater. J Colloid Interface Sci 295(1):71–78. https://doi.org/10.1016/j.jcis.2005.08.006

    Article  CAS  PubMed  Google Scholar 

  14. Valix M, Cheung WH, McKay G (2006) Roles of the textural and surface chemical properties of activated carbon in the adsorption of acid blue dye. Langmuir 22(10):4574–4582. https://doi.org/10.1021/la051711j

    Article  CAS  PubMed  Google Scholar 

  15. Moussavi G, Mahmoudi M (2009) Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles. J Hazard Mater 168(2–3):806–812. https://doi.org/10.1016/j.jhazmat.2009.02.097

    Article  CAS  PubMed  Google Scholar 

  16. Fan JC, Shi ZX, Lian M, Li H, Yin J (2013) Mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite hydrogel with improved dye adsorption capacity. J Mater Chem A 1(25):7433–7443. https://doi.org/10.1039/c3ta10639j

    Article  CAS  Google Scholar 

  17. Cui M, Li Y, Sun Y, Wang H, Li M, Li L, Xu W (2021) Degradation of tetracycline in polluted wastewater by persulfate over copper alginate/graphene oxide composites. J Polym Environ. https://doi.org/10.1007/s10924-020-02038-6

    Article  Google Scholar 

  18. Zhao J, Zhao X, Guo B, Ma PX (2014) Multifunctional interpenetrating polymer network hydrogels based on methacrylated alginate for the delivery of small molecule drugs and sustained release of protein. Biomacromolecules 15(9):3246–3252. https://doi.org/10.1021/bm5006257

    Article  CAS  PubMed  Google Scholar 

  19. Thakur S, Sharma B, Verma A, Chaudhary J, Tamulevicius S, Thakur VK (2018) Recent progress in sodium alginate based sustainable hydrogels for environmental applications. J Clean Prod 198:143–159. https://doi.org/10.1016/j.jclepro.2018.06.259

    Article  CAS  Google Scholar 

  20. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37(1):106–126. https://doi.org/10.1016/j.progpolymsci.2011.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Alvarez-Lorenzo C, Blanco-Fernandez B, Puga AM, Concheiro A (2013) Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery. Adv Drug Deliv Rev 65(9):1148–1171. https://doi.org/10.1016/j.addr.2013.04.016

    Article  CAS  PubMed  Google Scholar 

  22. Benhouria A, Islam MA, Zaghouane-Boudiaf H, Boutahala M, Hameed BH (2015) Calcium alginate-bentonite-activated carbon composite beads as highly effective adsorbent for methylene blue. Chem Eng J 270:621–630. https://doi.org/10.1016/j.cej.2015.02.030

    Article  CAS  Google Scholar 

  23. Li YH, Du QJ, Liu TH, Sun JK, Wang YH, Wu SL, Wang ZH, Xia YZ, Xia LH (2013) Methylene blue adsorption on graphene oxide/calcium alginate composites. Carbohydr Polym 95(1):501–507. https://doi.org/10.1016/j.carbpol.2013.01.094

    Article  CAS  PubMed  Google Scholar 

  24. Kan A, Moriyama T, Takahashi S, Ogawa H (2011) Low-temperature sintering and microwave dielectric properties of MgO ceramic with LiF addition. Jpn J Appl Phys. https://doi.org/10.1143/jjap.50.09nf02

    Article  Google Scholar 

  25. Liu Z, Yuan L, Jin E, Yang X, Yu J (2019) Wetting, spreading and corrosion behavior of molten slag on dense MgO and MgO-C refractory. Ceram Int 45(1):718–724. https://doi.org/10.1016/j.ceramint.2018.09.234

    Article  CAS  Google Scholar 

  26. Wang T, Xu Y, Su Q, Yang R, Wang L, Liu B, Shen S, Jiang G, Chen W, Wang S (2014) Hierarchical porous nanosheet-assembled MgO microrods with high adsorption capacity. Mater Lett 116:332–336. https://doi.org/10.1016/j.matlet.2013.11.053

    Article  CAS  Google Scholar 

  27. Mashayekh-Salehi A, Moussavi G, Yaghmaeian K (2017) Preparation, characterization and catalytic activity of a novel mesoporous nanocrystalline MgO nanoparticle for ozonation of acetaminophen as an emerging water contaminant. Chem Eng J 310:157–169. https://doi.org/10.1016/j.cej.2016.10.096

    Article  CAS  Google Scholar 

  28. Shen Z, Zhang J, Hou D, Tsang DCW, Ok YS, Alessi DS (2019) Synthesis of MgO-coated corncob biochar and its application in lead stabilization in a soil washing residue. Environ Int 122:357–362. https://doi.org/10.1016/j.envint.2018.11.045

    Article  CAS  PubMed  Google Scholar 

  29. Lv Z, Wang H, Chen C, Yang S, Chen L, Alsaedi A, Hayat T (2019) Enhanced removal of uranium(VI) from aqueous solution by a novel Mg-MOF-74-derived porous MgO/carbon adsorbent. J Colloid Interface Sci 537:A1–A10. https://doi.org/10.1016/j.jcis.2018.11.062

    Article  CAS  PubMed  Google Scholar 

  30. Napoli F, Chiesa M, Giamello E, Fittipaldi M, Di Valentin C, Gallino F, Pacchioni G (2010) N-2(-) radical anions trapped in bulk polycrystalline MgO. J Phys Chem C 114(11):5187–5192. https://doi.org/10.1021/jp911962j

    Article  CAS  Google Scholar 

  31. Sun R-Q, Zhou X, Sun L-B, Wu H, Chun Y, Xu Q-H (2007) Synthesis of high-specific-surface-area solid strong base MgO with pinewood as exotemplate. Chem J Chin Univ -Chin 28(12):2333–2337

    CAS  Google Scholar 

  32. Liu S, Peng W, Zhang J, Tong Y, Yuan J, Qi X, Yan X, Sun D, Dai B (2018) Mesoporous CuO/MgO synthesized by a homogeneous-hydrothermal method and its catalytic performance for the ethynylation reaction of formaldehyde. Energy Sour A 40(19):2327–2333. https://doi.org/10.1080/15567036.2018.1487484

    Article  CAS  Google Scholar 

  33. Singha RK, Yadav A, Shukla A, Iqbal Z, Pendem C, Sivakumar K, Bal R (2016) Promoting effect of CeO2 and MgO for CO2 reforming of methane over Ni-ZnO catalyst. ChemistrySelect 1(12):3075–3085. https://doi.org/10.1002/slct.201600685

    Article  CAS  Google Scholar 

  34. Nguyen Kim N, Phi Thi Thuy H, Tran Dai L, Tran Quang H (2013) A facile synthesis of nanostructured magnesium oxide particles for enhanced adsorption performance in reactive blue 19 removal. J Colloid Interface Sci 398:210–216. https://doi.org/10.1016/j.jcis.2013.02.018

    Article  CAS  Google Scholar 

  35. Tian G, Ji Q, Xu D, Tan L, Quan F, Xia Y (2013) The effect of zinc ion content on flame retardance and thermal degradation of alginate fibers. Fibers Polym 14(5):767–771. https://doi.org/10.1007/s12221-013-0767-2

    Article  CAS  Google Scholar 

  36. Tian P, Han XY, Ning GL, Fang HX, Ye JW, Gong WT, Lin Y (2013) Synthesis of porous hierarchical MgO and its superb adsorption properties. ACS Appl Mater Interfaces 5(23):12411–12418. https://doi.org/10.1021/am403352y

    Article  CAS  PubMed  Google Scholar 

  37. Zhang Q, Fan Y, Xu N (2009) Effect of the surface properties on filtration performance of Al2O3–TiO2 composite membrane. Sep Purif Technol 66(2):306–312. https://doi.org/10.1016/j.seppur.2008.12.010

    Article  CAS  Google Scholar 

  38. Erdem E, Çölgeçen G, Donat R (2005) The removal of textile dyes by diatomite earth. J Colloid Interface Sci 282(2):314–319. https://doi.org/10.1016/j.jcis.2004.08.166

    Article  CAS  PubMed  Google Scholar 

  39. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40(9):1361–1403. https://doi.org/10.1021/ja02242a004

    Article  CAS  Google Scholar 

  40. Ren Y, Abbood HA, He F, Peng H, Huang K (2013) Magnetic EDTA-modified chitosan/SiO2/Fe3O4 adsorbent: preparation, characterization, and application in heavy metal adsorption. Chem Eng J 226:300–311. https://doi.org/10.1016/j.cej.2013.04.059

    Article  CAS  Google Scholar 

  41. Duman O, Ayranci E (2010) Adsorptive removal of cationic surfactants from aqueous solutions onto high-area activated carbon cloth monitored by in situ UV spectroscopy. J Hazard Mater 174(1):359–367. https://doi.org/10.1016/j.jhazmat.2009.09.058

    Article  CAS  PubMed  Google Scholar 

  42. Tang KL, Li YH, Zhang XP, Li MX, Du QJ, Li H, Wang YQ, Wang DC, Wang CP, Sui KY, Li HL, Xia YZ (2020) Synthesis of citric acid modified beta-cyclodextrin/activated carbon hybrid composite and their adsorption properties toward methylene blue. J Appl Polym Sci 137(4):9. https://doi.org/10.1002/app.48315

    Article  CAS  Google Scholar 

  43. Biswas K, Gupta K, Ghosh UC (2009) Adsorption of fluoride by hydrous iron(III)–tin(IV) bimetal mixed oxide from the aqueous solutions. Chem Eng J 149(1):196–206. https://doi.org/10.1016/j.cej.2008.09.047

    Article  CAS  Google Scholar 

  44. Kyzas GZ, Kostoglou M, Lazaridis NK (2009) Copper and chromium(VI) removal by chitosan derivatives—equilibrium and kinetic studies. Chem Eng J 152(2):440–448. https://doi.org/10.1016/j.cej.2009.05.005

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51672140), Taishan Scholar Project of Shandong Province (201511029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhui Li.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, M., Li, Y., Sun, Y. et al. Study on Adsorption Performance of MgO/Calcium Alginate Composite for Congo Red in Wastewater. J Polym Environ 29, 3977–3987 (2021). https://doi.org/10.1007/s10924-021-02170-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02170-x

Keywords