Skip to main content
Log in

Preparation of Carboxymethyl Cellulose-Based Hydrogel Supported by Two-Dimensional Montmorillonite Nanosheets for Methylene Blue Removal

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Carboxymethyl cellulose-based hydrogel enhanced by two-dimensional montmorillonite nanosheets (CMC-MMTs Gel) has been successfully synthesized throguh polymerization for methylene blue (MB) removal from water. Structure characterization shows that the introduction of two-dimensional montmorillonite nanosheets (2D MMTs) into CMC-based hyddrogel results in a roguh surface and increased porosity. Adsorption tests demonstrate that the adsorption rate and adsorption capacity of CMC-based hydrogel increase significantly with the increase in 2D MMTs content, and a high adsorption capacity of 410 mg g−1 can be reached. After 5 cycles, CMC-MMTs Gel still exhibits good removal performance indicating a good reusability and structural stability. The enhanced MB removal performance and improved structural stability might be due to 2D MMTs and the increased porosity. FTIR and XPS characterizations demonstrate that the adsorption mechanism of MB onto CMC-MMTs Gel might be attributed to electrostatic adsorption and ion-exchange between MB molecules and MMTs, and the interactions between MB molecules and the hydroxyl and carboxyl groups of CMC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Karimifard S, Alavi Moghaddam MR (2018) Application of response surface methodology in physicochemical removal of dyes from wastewater: a critical review. Sci Total Environ 640–641:772–797. https://doi.org/10.1016/j.scitotenv.2018.05.355

    Article  CAS  PubMed  Google Scholar 

  2. Yadav VB, Gadi R, Kalra S (2019) Clay based nanocomposites for removal of heavy metals from water: a review. J Environ Manage 232:803–817. https://doi.org/10.1016/j.jenvman.2018.11.120

    Article  CAS  PubMed  Google Scholar 

  3. Han H, Rafiq MK, Zhou T et al (2019) A critical review of clay-based composites with enhanced adsorption performance for metal and organic pollutants. J Hazard Mater 369:780–796. https://doi.org/10.1016/j.jhazmat.2019.02.003

    Article  CAS  PubMed  Google Scholar 

  4. Pandey S (2017) A comprehensive review on recent developments in bentonite-based materials used as adsorbents for wastewater treatment. J Mol Liq 241:1091–1113. https://doi.org/10.1016/j.molliq.2017.06.115

    Article  CAS  Google Scholar 

  5. Foroutan R, Mohammadi R, Sohrabi N et al (2020) Calcined alluvium of agricultural streams as a recyclable and cleaning tool for cationic dye removal from aqueous media. Environ Technol Innov. https://doi.org/10.1016/j.eti.2019.100530

    Article  Google Scholar 

  6. Foroutan R, Mohammadi R, Razeghi J, Ramavandi B (2019) Performance of algal activated carbon/Fe3O4 magnetic composite for cationic dyes removal from aqueous solutions. Algal Res. https://doi.org/10.1016/j.algal.2019.101509

    Article  Google Scholar 

  7. Kang S, Zhao Y, Wang W et al (2018) Removal of methylene blue from water with montmorillonite nanosheets/chitosan hydrogels as adsorbent. Appl Surf Sci 448:203–211. https://doi.org/10.1016/j.apsusc.2018.04.037

    Article  CAS  Google Scholar 

  8. Thakur S, Pandey S, Arotiba OA (2016) Development of a sodium alginate-based organic/inorganic superabsorbent composite hydrogel for adsorption of methylene blue. Carbohydr Polym 153:34–46. https://doi.org/10.1016/j.carbpol.2016.06.104

    Article  CAS  PubMed  Google Scholar 

  9. Liu C, Omer AM, Ouyang XK (2018) Adsorptive removal of cationic methylene blue dye using carboxymethyl cellulose/k-carrageenan/activated montmorillonite composite beads: Isotherm and kinetic studies. Int J Biol Macromol 106:823–833. https://doi.org/10.1016/j.ijbiomac.2017.08.084

    Article  CAS  PubMed  Google Scholar 

  10. Astuti W, Sulistyaningsih T, Kusumastuti E et al (2019) Thermal conversion of pineapple crown leaf waste to magnetized activated carbon for dye removal. Bioresour Technol. https://doi.org/10.1016/j.biortech.2019.121426

    Article  PubMed  Google Scholar 

  11. Zhao Y, Kang S, Qin L et al (2020) Self-assembled gels of Fe-chitosan/montmorillonite nanosheets: dye degradation by the synergistic effect of adsorption and photo-Fenton reaction. Chem Eng J. https://doi.org/10.1016/j.cej.2019.122322

    Article  PubMed Central  PubMed  Google Scholar 

  12. Li X, Zhao X, Zhou X, Yang B (2021) Phosphate recovery from aqueous solution via struvite crystallization based on electrochemical-decomposition of nature magnesite. J Clean Prod. https://doi.org/10.1016/j.jclepro.2021.126039

    Article  PubMed Central  PubMed  Google Scholar 

  13. Zhu Y, Fan W, Zhou T, Li X (2019) Removal of chelated heavy metals from aqueous solution: a review of current methods and mechanisms. Sci Total Environ 678:253–266. https://doi.org/10.1016/j.scitotenv.2019.04.416

    Article  CAS  PubMed  Google Scholar 

  14. Peng W, Li H, Liu Y, Song S (2017) A review on heavy metal ions adsorption from water by graphene oxide and its composites. J Mol Liq 230:496–504. https://doi.org/10.1016/j.molliq.2017.01.064

    Article  CAS  Google Scholar 

  15. Aichour A, Zaghouane-Boudiaf H, Iborra CV, Polo MS (2018) Bioadsorbent beads prepared from activated biomass/alginate for enhanced removal of cationic dye from water medium: Kinetics, equilibrium and thermodynamic studies. J Mol Liq 256:533–540. https://doi.org/10.1016/j.molliq.2018.02.073

    Article  CAS  Google Scholar 

  16. Sharma S, Hasan A, Kumar N, Pandey LM (2018) Removal of methylene blue dye from aqueous solution using immobilized Agrobacterium fabrum biomass along with iron oxide nanoparticles as biosorbent. Environ Sci Pollut Res 25:21605–21615. https://doi.org/10.1007/s11356-018-2280-z

    Article  CAS  Google Scholar 

  17. Uddin MK (2017) A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem Eng J 308:438–462. https://doi.org/10.1016/j.cej.2016.09.029

    Article  CAS  Google Scholar 

  18. Foroutan R, Zareipour R, Mohammadi R (2018) Fast adsorption of chromium (VI) ions from synthetic sewage using bentonite and bentonite/bio-coal composite: a comparative study. Mater Res Express. https://doi.org/10.1088/2053-1591/aaebb9

    Article  Google Scholar 

  19. Foroutan R, Khoo FS, Ramavandi B, Abbasi S (2017) Heavy metals removal from synthetic and shipyard wastewater using phoenix dactylifera activated carbon. Desalin Water Treat 82:146–156. https://doi.org/10.5004/dwt.2017.20908

    Article  CAS  Google Scholar 

  20. Khan M, Lo IMC (2016) A holistic review of hydrogel applications in the adsorptive removal of aqueous pollutants: Recent progress, challenges, and perspectives. Water Res 106:259–271. https://doi.org/10.1016/j.watres.2016.10.008

    Article  CAS  PubMed  Google Scholar 

  21. Hong TT, Okabe H, Hidaka Y, Hara K (2018) Radiation synthesis and characterization of super-absorbing hydrogel from natural polymers and vinyl monomer. Environ Pollut 242:1458–1466. https://doi.org/10.1016/j.envpol.2018.07.129

    Article  CAS  PubMed  Google Scholar 

  22. Salahuddin NA, EL-Daly HA, El Sharkawy RG, Nasr BT, (2018) Synthesis and efficacy of PPy/CS/GO nanocomposites for adsorption of ponceau 4R dye. Polymer (Guildf) 146:291–303. https://doi.org/10.1016/j.polymer.2018.04.053

    Article  CAS  Google Scholar 

  23. Bozoğlan BK, Duman O, Tunç S (2020) Preparation and characterization of thermosensitive chitosan/carboxymethylcellulose/scleroglucan nanocomposite hydrogels. Int J Biol Macromol 162:781–797. https://doi.org/10.1016/j.ijbiomac.2020.06.087

    Article  CAS  PubMed  Google Scholar 

  24. Kancı Bozoğlan B, Duman O, Tunç S (2021) Smart antifungal thermosensitive chitosan/carboxymethylcellulose/scleroglucan/montmorillonite nanocomposite hydrogels for onychomycosis treatment. Colloids Surfaces A. https://doi.org/10.1016/j.colsurfa.2020.125600

    Article  Google Scholar 

  25. Foroutan R, Ahmadlouydarab M, Ramavandi B, Mohammadi R (2018) Studying the physicochemical characteristics and metals adsorptive behavior of CMC-g-HAp/Fe3O4 nanobiocomposite. J Environ Chem Eng 6:6049–6058. https://doi.org/10.1016/j.jece.2018.09.030

    Article  CAS  Google Scholar 

  26. Hong TT, Okabe H, Hidaka Y et al (2019) Radiation induced modified CMC-based hydrogel with enhanced reusability for heavy metal ions adsorption. Polymer (Guildf). https://doi.org/10.1016/j.polymer.2019.121772

    Article  Google Scholar 

  27. Salama A, Shukry N, El-Sakhawy M (2015) Carboxymethyl cellulose-g-poly(2-(dimethylamino) ethyl methacrylate) hydrogel as adsorbent for dye removal. Int J Biol Macromol 73:72–75. https://doi.org/10.1016/j.ijbiomac.2014.11.002

    Article  CAS  PubMed  Google Scholar 

  28. Pereira AGB, Rodrigues FHA, Paulino AT et al (2021) Recent advances on composite hydrogels designed for the remediation of dye-contaminated water and wastewater: a review. J Clean Prod. https://doi.org/10.1016/j.jclepro.2020.124703

    Article  Google Scholar 

  29. Zheng Y, Wang A (2010) Enhanced adsorption of ammonium using hydrogel composites based on chitosan and halloysite. J Macromol Sci Part A 47:33–38. https://doi.org/10.1080/10601320903394421

    Article  CAS  Google Scholar 

  30. Chiew CSC, Poh PE, Pasbakhsh P et al (2014) Physicochemical characterization of halloysite/alginate bionanocomposite hydrogel. Appl Clay Sci 101:444–454. https://doi.org/10.1016/j.clay.2014.09.007

    Article  CAS  Google Scholar 

  31. Vahidhabanu S, Karuppasamy D, Adeogun AI, Babu BR (2017) Impregnation of zinc oxide modified clay over alginate beads: A novel material for the effective removal of congo red from wastewater. RSC Adv 7:5669–5678. https://doi.org/10.1039/c6ra26273b

    Article  CAS  Google Scholar 

  32. Shirsath SR, Patil AP, Patil R et al (2013) Removal of Brilliant Green from wastewater using conventional and ultrasonically prepared poly(acrylic acid) hydrogel loaded with kaolin clay: a comparative study. Ultrason Sonochem 20:914–923. https://doi.org/10.1016/j.ultsonch.2012.11.010

    Article  CAS  PubMed  Google Scholar 

  33. Rahman MM, Rimu SH, Biswas S et al (2020) Preparation of poly(acrylic acid) exfoliated clay composite by in-situ polymerisation for decolouration of methylene blue from wastewater. Int J Environ Anal Chem 00:1–17. https://doi.org/10.1080/03067319.2020.1813732

    Article  CAS  Google Scholar 

  34. Yi JZ, Zhang LM (2007) Studies of sodium humate/polyacrylamide/clay hybrid hydrogels. I. Swelling and rheological properties of hydrogels. Eur Polym J 43:3215–3221. https://doi.org/10.1016/j.eurpolymj.2007.05.023

    Article  CAS  Google Scholar 

  35. Chen T, Yuan Y, Zhao Y et al (2019) Preparation of montmorillonite nanosheets through freezing/thawing and ultrasonic exfoliation. Langmuir. https://doi.org/10.1021/acs.langmuir.8b04171

    Article  PubMed Central  PubMed  Google Scholar 

  36. Wang W, Zhao Y, Yi H et al (2018) Preparation and characterization of self-assembly hydrogels with exfoliated montmorillonite nanosheets and chitosan. Nanotechnology. https://doi.org/10.1088/1361-6528/aa9ba4

    Article  PubMed Central  PubMed  Google Scholar 

  37. Yi H, Ai Z, Zhao Y et al (2020) Design of 3D-network montmorillonite nanosheet/stearic acid shape-stabilized phase change materials for solar energy storage. Sol Energy Mater Sol Cells. https://doi.org/10.1016/j.solmat.2019.110233

    Article  Google Scholar 

  38. Qin L, Zhao Y, Wang L et al (2020) Preparation of ion-imprinted montmorillonite nanosheets/chitosan gel beads for selective recovery of Cu(II) from wastewater. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.126560

    Article  PubMed  Google Scholar 

  39. Wang W, Wang J, Zhao Y et al (2020) High-performance two-dimensional montmorillonite supported-poly(acrylamide-co-acrylic acid) hydrogel for dye removal. Environ Pollut. https://doi.org/10.1016/j.envpol.2019.113574

    Article  PubMed Central  PubMed  Google Scholar 

  40. Chen L, Zhao Y, Chen T et al (2019) Correlation of aspect ratio of montmorillonite nanosheets with the colloidal properties in aqueous solutions. Results Phys. https://doi.org/10.1016/j.rinp.2019.102526

    Article  Google Scholar 

  41. Temuujin J, Jadambaa T, Burmaa G et al (2004) Characterisation of acid activated montmorillonite clay from Tuulant (Mongolia). Ceram Int 30:251–255. https://doi.org/10.1016/S0272-8842(03)00096-8

    Article  CAS  Google Scholar 

  42. Zhang J, Jia G, Wanbin Z et al (2021) Nanoencapsulation of zeaxanthin extracted from Lycium barbarum L. by complex coacervation with gelatin and CMC. Food Hydrocoll 112:106280. https://doi.org/10.1016/j.foodhyd.2020.106280

    Article  CAS  Google Scholar 

  43. Reddy BV, Rao GR (2008) Vibrational spectra and modified valence force field for N, N’-methylenebisacrylamide. Indian J Pure Appl Phys 46:611–616

    CAS  Google Scholar 

  44. Soares VLP, Nascimento RSV, Menezes VJ, Batista L (2004) TG characterization of organically modified montmorillonite. J Therm Anal Calorim 75:671–676. https://doi.org/10.1023/B:JTAN.0000027161.10803.60

    Article  CAS  Google Scholar 

  45. Lv G, Li Z, Jiang WT et al (2015) Interlayer configuration of ionic liquids in a Ca-montmorillonite as evidenced by FTIR, TG-DTG, and XRD analyses. Mater Chem Phys 162:417–424. https://doi.org/10.1016/j.matchemphys.2015.06.008

    Article  CAS  Google Scholar 

  46. Jeong D, Kim C, Kim Y, Jung S (2020) Dual crosslinked carboxymethyl cellulose/polyacrylamide interpenetrating hydrogels with highly enhanced mechanical strength and superabsorbent properties. Eur Polym J. https://doi.org/10.1016/j.eurpolymj.2020.109586

    Article  Google Scholar 

  47. Peighambardoust SJ, Aghamohammadi-Bavil O, Foroutan R, Arsalani N (2020) Removal of malachite green using carboxymethyl cellulose-g-polyacrylamide/montmorillonite nanocomposite hydrogel. Int J Biol Macromol 159:1122–1131. https://doi.org/10.1016/j.ijbiomac.2020.05.093

    Article  CAS  PubMed  Google Scholar 

  48. Kumararaja P, Manjaiah KM, Datta SC et al (2018) Chitosan-g-poly(acrylic acid)-bentonite composite: a potential immobilizing agent of heavy metals in soil. Cellulose 25:3985–3999. https://doi.org/10.1007/s10570-018-1828-x

    Article  CAS  Google Scholar 

  49. Ji J, Zeng C, Ke Y, Pei Y (2017) Preparation of poly(acrylamide-co-acrylic acid)/silica nanocomposite microspheres and their performance as a plugging material for deep profile control. J Appl Polym Sci 134:1–11. https://doi.org/10.1002/app.45502

    Article  CAS  Google Scholar 

  50. Rakhsh F, Golchin A, Beheshti Al Agha A, Alamdari P (2017) Effects of exchangeable cations, mineralogy and clay content on the mineralization of plant residue carbon. Geoderma 307:150–158. https://doi.org/10.1016/j.geoderma.2017.07.010

    Article  CAS  Google Scholar 

  51. He Y, Bin JD, Chen J et al (2018) Synthesis of MnO2 nanosheets on montmorillonite for oxidative degradation and adsorption of methylene blue. J Colloid Interface Sci 510:207–220. https://doi.org/10.1016/j.jcis.2017.09.066

    Article  CAS  PubMed  Google Scholar 

  52. Chen Y, Chen L, Bai H, Li L (2013) Graphene oxide-chitosan composite hydrogels as broad-spectrum adsorbents for water purification. J Mater Chem A 1:1992–2001. https://doi.org/10.1039/c2ta00406b

    Article  CAS  Google Scholar 

  53. Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10. https://doi.org/10.1016/j.cej.2009.09.013

    Article  CAS  Google Scholar 

  54. Duman O, Tunç S, Polat TG, Bozoǧlan BKI (2016) Synthesis of magnetic oxidized multiwalled carbon nanotube-κ-carrageenan-Fe3O4 nanocomposite adsorbent and its application in cationic Methylene Blue dye adsorption. Carbohydr Polym 147:79–88. https://doi.org/10.1016/j.carbpol.2016.03.099

    Article  CAS  PubMed  Google Scholar 

  55. Duman O, Polat TG, Diker CÖ, Tunç S (2020) Agar/κ-carrageenan composite hydrogel adsorbent for the removal of Methylene Blue from water. Int J Biol Macromol 160:823–835. https://doi.org/10.1016/j.ijbiomac.2020.05.191

    Article  CAS  PubMed  Google Scholar 

  56. Wang W, Ni J, Chen L et al (2020) Synthesis of carboxymethyl cellulose-chitosan-montmorillonite nanosheets composite hydrogel for dye effluent remediation. Int J Biol Macromol 165:1–10. https://doi.org/10.1016/j.ijbiomac.2020.09.154

    Article  CAS  PubMed  Google Scholar 

  57. Gan W, Shang X, Li XH et al (2019) Achieving high adsorption capacity and ultrafast removal of methylene blue and Pb2+ by graphene-like TiO2@C. Colloids Surfaces A 561:218–225. https://doi.org/10.1016/j.colsurfa.2018.10.079

    Article  CAS  Google Scholar 

  58. Ovchinnikov OV, Evtukhova AV, Kondratenko TS et al (2016) Manifestation of intermolecular interactions in FTIR spectra of methylene blue molecules. Vib Spectrosc 86:181–189. https://doi.org/10.1016/j.vibspec.2016.06.016

    Article  CAS  Google Scholar 

  59. Pang J, Fu F, Ding Z et al (2017) Adsorption behaviors of methylene blue from aqueous solution on mesoporous birnessite. J Taiwan Inst Chem Eng 77:168–176. https://doi.org/10.1016/j.jtice.2017.04.041

    Article  CAS  Google Scholar 

  60. Wang W, Bai H, Zhao Y et al (2019) Synthesis of chitosan cross-linked 3D network-structured hydrogel for methylene blue removal. Int J Biol Macromol 141:98–107. https://doi.org/10.1016/j.ijbiomac.2019.08.225

    Article  CAS  PubMed  Google Scholar 

  61. Yang JY, Jiang XY, Jiao FP, Yu JG (2018) The oxygen-rich pentaerythritol modified multi-walled carbon nanotube as an efficient adsorbent for aqueous removal of alizarin yellow R and alizarin red S. Appl Surf Sci 436:198–206. https://doi.org/10.1016/j.apsusc.2017.12.029

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial supports from the “Fundamental Research Funds for the Central Universities (WUT: 2020IVA082) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

QM characterization of samples, investigation and writing original draft; WW syntheses, investigation and data analysis; WG conceptualization, review and editing; LX review and editing; HL investigation; Shaoxian Song: resources, conceptualization and supervision. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Wei Ge.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2620 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Q., Wang, W., Ge, W. et al. Preparation of Carboxymethyl Cellulose-Based Hydrogel Supported by Two-Dimensional Montmorillonite Nanosheets for Methylene Blue Removal. J Polym Environ 29, 3918–3931 (2021). https://doi.org/10.1007/s10924-021-02166-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02166-7

Keywords