Skip to main content
Log in

Characterization of Microfibers of Carbon Nanotubes Obtained by Electrospinning for Use in Electrochemical Sensor

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Due to the development of new products by the pharmaceutical industry, in which the emerging pollutants waste is generated, it is extremely important to study new methodologies capable of detecting such substances, preferentially in very small concentrations, because they are considered a threat to the environment and health of the population. This paper aims the development of an electrochemical sensor of multi-walled carbon nanotubes (MWCNTs), using electrospun fibers based on Ecovio® (trading name of a blend produced by BASF, Germany). The polymers constituting such blend are poly(butylene adipate-co-terephthalate (PBAT) and poly (lactic acid) (PLA). The parameters used for electrospinning were: 15.0% of Ecovio® (m/v); 0.60% of MWCNTs (m/v); flow of 1.8 mL h−1; distance needle-collector of 16 cm and voltage of 18 kV. The evaluation of the morphology and diameter of fibers were conducted by analysis of images from scanning electron microscopy (SEM). Average fiber diameters of 2.24 ± 0.39 μm for Ecovio® fiber and 2.23 ± 1.19 μm for fiber with MWCNTs were obtained, noticing an increase in the number of beads with addition of MWCNTs. Analysis through transmission electron microscopy (TEM) showed that MWCNTs are mostly inside of the fibers, corroborating with the results of the analysis of the contact angle, which evidenced no change in hydrophilicity of fibers due to presence of MWCNTs and with the analysis of FTIR, which did not demonstrate changes in the bands on respective spectrum. However, mechanical analysis indicates the existence interactions between MWCNTs and polymer, due to the decrease of the resistance and rupture tension of the films with the addition of MWCNTs. Moreover, this interaction can also be noticed in thermogravimetric analysis (TGA), due to the decrease of 13.9 °C and 8.2 °C in the temperatures of the beginning of the degradation in the first and second thermal event and there was also an increase of the crystallinity of the material after the addition of MWCNTs, a result proven by differential scanning calorimetry (DSC) and X-ray diffraction (DRX). The obtained fibers were also submitted to thermal treatment due to the non-conductor character of the polymer. For the material obtained after the firing, a FTIR analysis was performed, in which characteristic bands of the polymer were observed, indicating the presence of the polymer even after thermal treatment. Although, this result did not adversely affect the electrochemical response of the material, as indicated in the results obtained in the electrochemical tests, performed by cyclic voltammetry (CV) containing the drug metronidazole. Thus, the characterization results sustain the conclusions achieved in the electrochemical tests, confirming the feasibility of use of electrospun MWCNTs in an electrochemical sensor.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Das R, Ali ME, Hamid SBA, Ramakrishna S, Chowdhury ZZ (2014) Carbon nanotube membranes for water purification: a bright future in water desalination. Desalination 336:97–109. https://doi.org/10.1016/j.desal.2013.12.026

    Article  CAS  Google Scholar 

  2. Daughton CG, Ternes TA (1999) Pharmaceuticals and personal care products in the environment: Agents of subtle change? Environ Health Perspect 107:907–938. https://doi.org/10.1289/ehp.99107s6907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Extração de Óleo em Coluna de Leito Fixo - Método das Linhas, (n.d.).

  4. Muñoz I, Martínez Bueno MJ, Agüera A, Fernández-Alba AR (2010) Environmental and human health risk assessment of organic micro-pollutants occurring in a Spanish marine fish farm. Environ. Pollut. 158:1809–1816. https://doi.org/10.1016/j.envpol.2009.11.006

    Article  CAS  PubMed  Google Scholar 

  5. Yu K, Li B, Zhang T (2012) Direct rapid analysis of multiple PPCPs in municipal wastewater using ultrahigh performance liquid chromatography-tandem mass spectrometry without SPE pre-concentration. Anal Chim Acta 738:59–68. https://doi.org/10.1016/j.aca.2012.05.057

    Article  CAS  PubMed  Google Scholar 

  6. Gürcü B, Koca YB, Özkut M, Tuğlu MI (2016) Matrix changes due to the toxic effects of metronidazole in intestinal tissue of fish (Onchorhynchus mykiss). Chemosphere 144:1605–1610. https://doi.org/10.1016/j.chemosphere.2015.10.043

    Article  CAS  PubMed  Google Scholar 

  7. Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ (2007) Multi-residue method for the determination of basic/neutral pharmaceuticals and illicit drugs in surface water by solid-phase extraction and ultra performance liquid chromatography–positive electrospray ionisation tandem mass spectrometry. J Chromatogr A 1161:132–145. https://doi.org/10.1016/j.chroma.2007.05.074

    Article  CAS  PubMed  Google Scholar 

  8. Rosenberger AG, Dragunski DC, Muniz EC, Módenes AN, Alves HJ, Tarley CRT, Machado SAS, Caetano J (2020) Electrospinning in the preparation of an electrochemical sensor based on carbon nanotubes. J Mol Liq 298:112068. https://doi.org/10.1016/j.molliq.2019.112068

    Article  CAS  Google Scholar 

  9. Battersby JE, Greenwood JJD (2004) Monitoring terrestrial mammals in the UK: past, present, and future, using lessons from the bird world. Mamm Rev 34:3–29. https://doi.org/10.1046/j.0305-1838.2003.00023.x

    Article  Google Scholar 

  10. Liu W, Zhang J, Li C, Tang L, Zhang Z, Yang M (2013) A novel composite film derived from cysteic acid and PDDA-functionalized graphene: Enhanced sensing material for electrochemical determination of metronidazole. Talanta 104:204–211. https://doi.org/10.1016/j.talanta.2012.11.013

    Article  CAS  PubMed  Google Scholar 

  11. Bartlett PN, Ghoneim E, El-Hefnawy G, El-Hallag I (2005) Voltammetry and determination of metronidazole at a carbon fiber microdisk electrode. Talanta 66:869–874. https://doi.org/10.1016/j.talanta.2004.12.048

    Article  CAS  PubMed  Google Scholar 

  12. Mollamahale YB, Ghorbani M, Ghalkhani M, Vossoughi M, Dolati A (2013) Highly sensitive 3D gold nanotube ensembles: application to electrochemical determination of metronidazole. Electrochim Acta 106:288–292. https://doi.org/10.1016/j.electacta.2013.05.084

    Article  CAS  Google Scholar 

  13. Tursynbolat S, Bakytkarim Y, Huang J, Wang L (2018) Ultrasensitive electrochemical determination of metronidazole based on polydopamine/carboxylic multi-walled carbon nanotubes nanocomposites modified GCE. J Pharm Anal 8:124–130. https://doi.org/10.1016/j.jpha.2017.11.001

    Article  PubMed  Google Scholar 

  14. Xue J, Wu T, Dai Y, Xia Y (2019) Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev 119:5298–5415. https://doi.org/10.1021/acs.chemrev.8b00593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Luo X, Morrin A, Killard AJ, Smyth MR (2006) Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 18:319–326. https://doi.org/10.1002/elan.200503415

    Article  CAS  Google Scholar 

  16. Wu Q, Xu Y, Yao Z, Liu A, Shi G (2010) Supercapacitors Based on Flexible Graphene/Polyaniline Nanofiber Composite Films. ACS Nano 4:1963–1970. https://doi.org/10.1021/nn1000035

    Article  CAS  PubMed  Google Scholar 

  17. Maduraiveeran G, Jin W (2017) Nanomaterials based electrochemical sensor and biosensor platforms for environmental applications. Trends Environ Anal Chem 13:10–23. https://doi.org/10.1016/j.teac.2017.02.001

    Article  CAS  Google Scholar 

  18. Ramakrishna K, Fujihara S, Wee-Eong T, Lim TC, Zuwei M (2005) An introduction to electrospinning and nanofibers. doi:https://doi.org/10.1177/155892500800300212.

  19. Baji A, Mai YW, Wong SC, Abtahi M, Chen P (2010) Electrospinning of polymer nanofibers: effects on oriented morphology, structures and tensile properties. Compos Sci Technol 70:703–718. https://doi.org/10.1016/j.compscitech.2010.01.010

    Article  CAS  Google Scholar 

  20. Costa RGF, de Oliveira JE, de Paula GF, de Picciani PHS, de Medeiros ES, Ribeiro C, Mattoso LHC (2012) Eletrofiação de polímeros em solução: parte II: aplicações e perspectivas. Polímeros 22:178–185. https://doi.org/10.1590/S0104-14282012005000018

    Article  CAS  Google Scholar 

  21. Gao X, Han S, Zhang R, Liu G, Wu J (2019) Progress in electrospun composite nanofibers: composition, performance and applications for tissue engineering. J Mater Chem B 7:7075–7089. https://doi.org/10.1039/c9tb01730e

    Article  CAS  PubMed  Google Scholar 

  22. Merkoçi A, Pumera M, Llopis X, Pérez B, Del Valle M, Alegret S (2005) New materials for electrochemical sensing VI: carbon nanotubes. TrAC-Trends Anal Chem 24:826–838. https://doi.org/10.1016/j.trac.2005.03.019

    Article  CAS  Google Scholar 

  23. Rivas GA, Rubianes MD, Rodríguez MC, Ferreyra NF, Luque GL, Pedano ML, Miscoria SA, Parrado C (2007) Carbon nanotubes for electrochemical biosensing. Talanta 74:291–307. https://doi.org/10.1016/j.talanta.2007.10.013

    Article  CAS  PubMed  Google Scholar 

  24. Kurkina T, Vlandas A, Ahmad A, Kern K, Balasubramanian K (2011) Label-free detection of few copies of DNA with carbon nanotube impedance biosensors. Angew Chemie-Int Ed 50:3710–3714. https://doi.org/10.1002/anie.201006806

    Article  CAS  Google Scholar 

  25. De Volder MF, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 80:339

    Google Scholar 

  26. Kum MC, Joshi KA, Chen W, Myung NV, Mulchandani A (2007) Biomolecules-carbon nanotubes doped conducting polymer nanocomposites and their sensor application. Talanta 74:370–375. https://doi.org/10.1016/j.talanta.2007.08.047

    Article  CAS  PubMed  Google Scholar 

  27. Umasankar Y, Chen SM (2007) Separation and concentration effect of f-MWCNTs on electrocatalytic responses of ascorbic acid, dopamine and uric acid at f-MWCNTs incorporated with poly (neutral red) composite films. Electrochim Acta 52:5985–5996. https://doi.org/10.1016/j.electacta.2007.03.047

    Article  CAS  Google Scholar 

  28. Chen A, Chatterjee S (2013) Nanomaterials based electrochemical sensors for biomedical applications. Chem Soc Rev 42:5425–5438. https://doi.org/10.1039/c3cs35518g

    Article  CAS  PubMed  Google Scholar 

  29. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136. https://doi.org/10.1021/cr050569o

    Article  CAS  PubMed  Google Scholar 

  30. Oliveira VHB, Rechotnek F, da Silva EP, de Sousamarques V, Rubira AF, Silva R, Lourenço SA, Muniz EC (2020) A sensitive electrochemical sensor for Pb2+ ions based on ZnO nanofibers functionalized by L-cysteine. J Mol Liq 309:113041. https://doi.org/10.1016/j.molliq.2020.113041

    Article  CAS  Google Scholar 

  31. Villarreal CC, Pham T, Ramnani P, Mulchandani A (2017) Carbon allotropes as sensors for environmental monitoring. Curr Opin Electrochem 3:106–113. https://doi.org/10.1016/j.coelec.2017.07.004

    Article  CAS  Google Scholar 

  32. Barsan MM, Ghica ME, Brett CMA (2015) Electrochemical sensors and biosensors based on redox polymer/carbon nanotube modified electrodes: a review. Elsevier B.V. doi:https://doi.org/10.1016/j.aca.2015.02.059.

  33. Goes AM, Carvalho S, Oréfice RL, Avérous L, Custódio TA, Pimenta JG, de Souza MB, Branciforti MC, Bretas RES (2012) Viabilidade celular de nanofibras de polímeros biodegradáveis e seus nanocompósitos com argila montmorilonita. Polímeros 22:34–41. https://doi.org/10.1590/S0104-14282012005000012

    Article  CAS  Google Scholar 

  34. Li J, He WD, Yang LP, Sun XL, Hua Q (2007) Preparation of multi-walled carbon nanotubes grafted with synthetic poly(l-lysine) through surface-initiated ring-opening polymerization. Polymer (Guildf) 48:4352–4360. https://doi.org/10.1016/j.polymer.2007.05.076

    Article  CAS  Google Scholar 

  35. Kim B, Sigmund WM (2004) Functionalized multiwall carbon nanotube/gold nanoparticle composites. Langmuir 20:8239–8242. https://doi.org/10.1021/la049424n

    Article  CAS  PubMed  Google Scholar 

  36. Stalder AF, Kulik G, Sage D, Barbieri L, Hoffmann P (2006) A snake-based approach to accurate determination of both contact points and contact angles. Colloids Surfaces A 286:92–103. https://doi.org/10.1016/j.colsurfa.2006.03.008

    Article  CAS  Google Scholar 

  37. Bannach G, Perpétuo GL, Cavalheiro ÉTG, Cavalheiro CCS, Rocha RR (2011) Efeitos da história térmica nas propriedades do polímero pet: Um experimento para ensino de análise térmica. Quim Nova 34:1825–1829

    CAS  Google Scholar 

  38. Pereira RB, Morales AR (2014) Estudo do comportamento térmico e mecânico do PLA modificado com aditivo nucleante e modificador de impacto. Polímeros Ciência e Tecnol 24:198–202. https://doi.org/10.4322/polimeros.2014.042

    Article  CAS  Google Scholar 

  39. Pauliukaite R, Ghica ME, Fatibello-Filho O, Brett CMA (2010) Electrochemical impedance studies of chitosan-modified electrodes for application in electrochemical sensors and biosensors. Electrochim Acta 55:6239–6247. https://doi.org/10.1016/j.electacta.2009.09.055

    Article  CAS  Google Scholar 

  40. Haider A, Haider S, Kang IK (2018) A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J Chem 11:1165–1188. https://doi.org/10.1016/j.arabjc.2015.11.015

    Article  CAS  Google Scholar 

  41. Rodrigues BVM, Silva AS, Melo GFS, Vasconscellos LMR, Marciano FR, Lobo AO (2016) In fluence of low contents of superhydrophilic MWCNT on the properties and cell viability of electrospun poly(butylene adipate-co-terephthalate) fibers, 59: 782–791. doi:https://doi.org/10.1016/j.msec.2015.10.075.

  42. Barros RE, Neto B, Scarmino I, Bruns S (2010) Como fazer experimentos: pesquisa e desenvolvimento na indústria.

  43. Rahimpour A, Jahanshahi M, Khalili S, Mollahosseini A, Zirepour A, Rajaeian B (2012) Novel functionalized carbon nanotubes for improving the surface properties and performance of polyethersulfone (PES) membrane. Desalination 286:99–107. https://doi.org/10.1016/j.desal.2011.10.039

    Article  CAS  Google Scholar 

  44. Lee JKY, Chen N, Peng S, Li L, Tian L, Thakor N, Ramakrishna S (2018) Polymer-based composites by electrospinning: preparation & functionalization with nanocarbons. Prog Polym Sci 86:40–84. https://doi.org/10.1016/j.progpolymsci.2018.07.002

    Article  CAS  Google Scholar 

  45. Drelich J, Chibowski E, Meng K, Terpilowski (2011) Soft matter. https://doi.org/10.1039/c1sm05849e

  46. Mina F, Beg MDH, Islam MR, Nizam AKMMAA, Younus M (2013) Characterization of biodegradable nanocomposites with poly (lactic acid) and multi-walled carbon nanotubes, 3: 74–79.

  47. Xiang S, Feng L, Bian X, Li G, Chen X (2020) Evaluation of PLA content in PLA/PBAT blends using TGA. Polym Test 81:106211. https://doi.org/10.1016/j.polymertesting.2019.106211

    Article  CAS  Google Scholar 

  48. Venkatesan R, Rajeswari N (2017) ZnO/PBAT nanocomposite films: Investigation on the mechanical and biological activity for food packaging. Polym Adv Technol 28:20–27. https://doi.org/10.1002/pat.3847

    Article  CAS  Google Scholar 

  49. Ko SW, Hong MK, Park BJ, Gupta RK, Choi HJ, Bhattacharya SN (2009) Morphological and rheological characterization of multi-walled carbon nanotube/PLA/PBAT blend nanocomposites. Polym Bull 63:125–134. https://doi.org/10.1007/s00289-009-0072-9

    Article  CAS  Google Scholar 

  50. Urquijo J, Aranburu N, Dagréou S, Guerrica-Echevarría G, Eguiazábal JI (2017) CNT-induced morphology and its effect on properties in PLA/PBAT-based nanocomposites. Eur Polym J 93:545–555. https://doi.org/10.1016/j.eurpolymj.2017.06.035

    Article  CAS  Google Scholar 

  51. Arruda LC, Magaton M, Bretas RES, Ueki MM (2015) Influence of chain extender on mechanical, thermal and morphological properties of blown films of PLA/PBAT blends. Polym Test 43:27–37. https://doi.org/10.1016/j.polymertesting.2015.02.005

    Article  CAS  Google Scholar 

  52. Silva MC, De Oliveira SV, Araújo EM (2014) Propriedades mecânicas e térmicas de sistemas de PLA e PBAT/PLA, Rev. Eletrônica Mater. e Process. 9: 112–117. https://www2.ufcg.edu.br/revista-remap/index.php/REMAP/article/viewFile/430/316.

  53. Im JN, Doh SJ, Kim YJ, Yuu J (2015) PLA/PBAT 블렌드 수지의 생분해 거동 degradation of poly (lactic acid) and poly(butylene adipate-co-terephthalate). Blends Compost 52:338–343

    CAS  Google Scholar 

  54. Weng YX, Jin YJ, Meng QY, Wang L, Zhang M, Wang YZ (2013) Biodegradation behavior of poly(butylene adipate-co-terephthalate) (PBAT), poly(lactic acid) (PLA), and their blend under soil conditions. Polym Test 32:918–926. https://doi.org/10.1016/j.polymertesting.2013.05.001

    Article  CAS  Google Scholar 

  55. Palsikowski PA, Kuchnier CN, Pinheiro IF, Morales AR (2018) Biodegradation in soil of PLA/PBAT blends compatibilized with chain extender. J Polym Environ 26(1):330–341

    Article  CAS  Google Scholar 

  56. Pilla S, Kim SG, Auer GK, Gong S, Park CB (2010) Microcellular extrusion foaming of poly(lactide)/poly(butylene adipate-co-terephthalate) blends. Mater Sci Eng C 30:255–262. https://doi.org/10.1016/j.msec.2009.10.010

    Article  CAS  Google Scholar 

  57. Yeh JT, Tsou CH, Huang CY, Chen KN, Wu CS, Chai WL (2009) Compatible and crystallization properties of poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends. J Appl Polym Sci. https://doi.org/10.1002/app.30907

    Article  Google Scholar 

  58. Yang Z, Peng H, Wang W, Liu T (2010) Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J Appl Polym Sci 116:2658–2667. https://doi.org/10.1002/app

    Article  CAS  Google Scholar 

  59. Goyanes S, Rubiolo GR, Salazar A, Jimeno A, Corcuera MA, Mondragon I (2007) Carboxylation treatment of multiwalled carbon nanotubes monitored by infrared and ultraviolet spectroscopies and scanning probe microscopy. Diam Relat Mater 16:412–417. https://doi.org/10.1016/j.diamond.2006.08.021

    Article  CAS  Google Scholar 

  60. Abo-hamad A, Hayyan M, Abdulhakim M, Mirghani MES, Ali M (2017) Functionalization of carbon nanotubes using eutectic mixtures : a promising route for enhanced aqueous dispersibility and electrochemical activity. Chem Eng J 311:326–339. https://doi.org/10.1016/j.cej.2016.11.108

    Article  CAS  Google Scholar 

  61. Al-itry R, Lamnawar K, Maazouz A (2012) Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym Degrad Stab 97:1898–1914. https://doi.org/10.1016/j.polymdegradstab.2012.06.028

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by UNIOESTE. The authors would like to thank CNPq (National Council for Scientific and Technological Development) and Araucária Fundation (Paraná-Brazil) for the financial support and fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josiane Caetano.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gusmão, A.P., Rosenberger, A.G., Muniz, E.C. et al. Characterization of Microfibers of Carbon Nanotubes Obtained by Electrospinning for Use in Electrochemical Sensor. J Polym Environ 29, 1551–1565 (2021). https://doi.org/10.1007/s10924-020-01964-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01964-9

Keywords

Navigation