Skip to main content
Log in

Green Synthesis of Silver Nanoparticles Using Nymphae odorata Extract Incorporated Films and Antimicrobial Activity

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Silver nanoparticles (AgNPs) synthesis was formulated by the green method using Nymphae odorata plant extract as reducing and capping agent. Plants offer a good platform for synthesizing nanoparticles (NPs) which can act as a non-toxic, natural capping/reducing agent and can convert Ag+ to Ag0. The 5 min reduction time (the extract contains a lot of reduction agents, which leads to quick synthesis and such can be a great advantage) is a best experimental condition for the effective biological synthesis of AgNPs. Sodium alginate films were doped by these NPs. The antimicrobial study of AgNPs and doped films were examined by Staphylococcus aureus and Escherichia coli. As a result, at very low concentration of about 25 µl of AgNPs was found to inhibit the entire bacterial strains studied and films also showed a similar result. The results confirmed the effectiveness of prepared AgNPs and films as an antibacterial agent. Hence, it can be used for nano-biotechnology, biomedical and industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Laurencin CT, Kumbar SG, Nukavarapu SP (2009) Nanotechnology and orthopedics: A personal perspective. Wiley Interdiscip Rev Nanomedicine Nanobiotechnology 1:6–10. doi:https://doi.org/10.1002/wnan.25

    Article  CAS  PubMed  Google Scholar 

  2. Rodríguez-Luis O, Hernandez-Delgadillo R Green (2016) Synthesis of silver nanoparticles and their bactericidal and antimycotic activities against oral microbes. J Nanomater

  3. Barabadi H (2017) Nanobiotechnology: a promising scope of gold biotechnology. Cell Mol Biol 63:3–4. doi:https://doi.org/10.14715/cmb/2017.63.12.2

    Article  PubMed  Google Scholar 

  4. Shi J, Kantoff PW, Wooster R (2017) Farokhzad OC cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer 17:20–37. https://doi.org/10.1038/nrc.2016.108

    Article  CAS  PubMed  Google Scholar 

  5. Vijayakumar M, Priya K, Nancy FT, Noorlidah A, Ahmed ABA (2013) Biosynthesis, characterisation and anti-bacterial effect of plant-mediated silver nanoparticles using Artemisia nilagirica. Ind Crops Prod 41:235–240. https://doi.org/10.1016/j.indcrop.2012.04.017

    Article  CAS  Google Scholar 

  6. Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, Galdiero M (2015) Silver nanoparticles as potential antibacterial agents. Molecules 20:8856–8874. doi:https://doi.org/10.3390/molecules20058856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Muthukumaran U, Govindarajan M, Rajeswary M, Hoti SL (2015) Synthesis and characterization of silver nanoparticles using Gmelina asiatica leaf extract against filariasis, dengue, and malaria vector mosquitoes. Parasitol Res 114:1817–1827. https://doi.org/10.1007/s00436-015-4368-4

    Article  PubMed  Google Scholar 

  8. Tetgure SR, Borse AU, Sankapal BR, Garole VJ, Garole DJ (2015) Green biochemistry approach for synthesis of silver and gold nanoparticles using Ficus racemosa latex and their pH-dependent binding study with different amino acids using UV/Vis absorption spectroscopy. Amino Acids 47:757–765. https://doi.org/10.1007/s00726-014-1906-9

    Article  CAS  PubMed  Google Scholar 

  9. Jemilugba OT, Sakho EHM, Parani S, Mavumengwana V, Oluwafemi OS (2019) Green synthesis of silver nanoparticles using Combretum erythrophyllum leaves and its antibacterial activities. Colloids Interface Sci Commun. https://doi.org/10.1016/j.colcom.2019.100191

    Article  Google Scholar 

  10. Masurkar SA, Chaudhari PR, Shidore VB, Kamble SP (2011) Rapid biosynthesis of silver nanoparticles using Cymbopogan Citratus (Lemongrass) and its antimicrobial activity. Nano-Micro Lett 3:189–194. https://doi.org/10.3786/nml.v3i3.p189-194

    Article  CAS  Google Scholar 

  11. Ahmed S, Ahmad M, Swami BL, Ikram S (2016) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7:17–28. https://doi.org/10.1016/j.jare.2015.02.007

    Article  CAS  PubMed  Google Scholar 

  12. Duan H, Wang D, Li Y (2015) Green chemistry for nanoparticle synthesis. Chem Soc Rev. doi:https://doi.org/10.1039/c4cs00363b

    Article  PubMed  Google Scholar 

  13. Jose Varghese R, Zikalala N, Sakho EHM, Oluwafemi OS (2020) Green synthesis protocol on metal oxide nanoparticles using plant extracts. In: Colloidal metal oxide nanoparticles

  14. Krishnaraj C, Jagan EG, Rajasekar S, Selvakumar P, Kalaichelvan PT, Mohan N (2010) Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf B 76:50–56. https://doi.org/10.1016/j.colsurfb.2009.10.008

    Article  CAS  Google Scholar 

  15. Yugandhar P, Haribabu R, Savithramma N (2015) Synthesis, characterization and antimicrobial properties of green-synthesised silver nanoparticles from stem bark extract of Syzygium alternifolium (Wt.) Walp. 3 Biotech 5:1031–1039. https://doi.org/10.1007/s13205-015-0307-4

    Article  PubMed  PubMed Central  Google Scholar 

  16. Garg S, Chandra A, Mazumder A, Mazumder R (2014) Green synthesis of silver nanoparticles using Arnebia nobilis root extract and wound healing potential of its hydrogel. Asian J Pharm 8:95. https://doi.org/10.4103/0973-8398.134925

    Article  CAS  Google Scholar 

  17. Sundaravadivelan C, Nalini Padmanabhan M, Sivaprasath P, Kishmu L (2013) Biosynthesized silver nanoparticles from Pedilanthus tithymaloides leaf extract with anti-developmental activity against larval instars of Aedes aegypti L. (Diptera; Culicidae). Parasitol Res 112:303–311. https://doi.org/10.1007/s00436-012-3138-9

    Article  PubMed  Google Scholar 

  18. Dipankar C, Murugan S, Colloids, Surfaces B (2012) Biointerfaces The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Iresine herbstii leaf aqueous extracts. Colloids Surf B 98:112–119. https://doi.org/10.1016/j.colsurfb.2012.04.006

    Article  CAS  Google Scholar 

  19. Vasanth K, Ilango K, MohanKumar R, Agrawal A, Dubey GP (2014) Anticancer activity of Moringa oleifera mediated silver nanoparticles on human cervical carcinoma cells by apoptosis induction. Colloids Surf B 117:354–359. https://doi.org/10.1016/j.colsurfb.2014.02.052

    Article  CAS  Google Scholar 

  20. Maruti C, Kumar K, Yugandhar P, Suhrulatha D, Savithramma N (2015) Synthesis, characterization and antimicrobial studies of stem bark mediated synthesis of silver nanoparticles from Adansonia digitata (L.). J Pharm Sci Res 7:76–82

    Google Scholar 

  21. Mohamed El-Rafie H, Abdel-Aziz Hamed M (2014) Antioxidant and anti-inflammatory activities of silver nanoparticles biosynthesized from aqueous leaves extracts of four Terminalia species. Adv Nat Sci Nanosci Nanotechnol 5:035008. https://doi.org/10.1088/2043-6262/5/3/035008

    Article  CAS  Google Scholar 

  22. Krithiga N, Rajalakshmi A, Jayachitra A (2015) Green synthesis of silver nanoparticles using leaf extracts of Clitoria ternatea and Solanum nigrum and study of its antibacterial effect against common nosocomial Pathogens

  23. Singh A, Jain D, Upadhyay MK, Khandelwal N (2010) Green synthesis of silver nanoparticles using Argemone mexicana leaf extracts and evaluation of their antimicrobial activities. Dig J Nanomater Biostruct 5:483–489

    Google Scholar 

  24. Velusamy P, Su CH, Kumar GV, Adhikary S, Pandian K, Gopinath SCB, Chen Y, Anbu P (2016) Biopolymers regulate silver nanoparticle under microwave irradiation for effective antibacterial and antibiofilm activities. PLoS ONE 11:1–14. https://doi.org/10.1371/journal.pone.0157612

    Article  CAS  Google Scholar 

  25. Azlin-Hasim S, Cruz-Romero MC, Cummins E, Kerry JP, Morris MA (2016) The potential use of a layer-by-layer strategy to develop LDPE antimicrobial films coated with silver nanoparticles for packaging applications. J Colloid Interface Sci 461:239–248. doi:https://doi.org/10.1016/j.jcis.2015.09.021

    Article  CAS  PubMed  Google Scholar 

  26. Ionita M, Pandele MA, Iovu H (2013) Sodium alginate/graphene oxide composite films with enhanced thermal and mechanical properties. Carbohydr Polym 94:339–344. doi:https://doi.org/10.1016/j.carbpol.2013.01.065

    Article  CAS  PubMed  Google Scholar 

  27. Rani P, Mishra S, Sen G (2013) Microwave based synthesis of polymethyl methacrylate grafted sodium alginate: Its application as flocculant. Carbohydr Polym 91:686–692. doi:https://doi.org/10.1016/j.carbpol.2012.08.023

    Article  CAS  PubMed  Google Scholar 

  28. Deepa B, Abraham E, Pothan LA, Cordeiro N, Faria M, Thomas S (2016) Biodegradable nanocomposite films based on sodium alginate and cellulose nanofibrils. Materials 9:1–11. https://doi.org/10.3390/ma9010050

    Article  CAS  Google Scholar 

  29. Puppi D, Zhang X, Yang L, Chiellini F, Sun X, Chiellini E (2014) Nano/microfibrous polymeric constructs loaded with bioactive agents and designed for tissue engineering applications: A review. J Biomed Mater Res - Part B Appl Biomater 102:1562–1579. doi:https://doi.org/10.1002/jbm.b.33144

    Article  CAS  Google Scholar 

  30. Martins M, Barros AA, Quraishi S, Gurikov P, Raman SP, Smirnova I, Duarte ARC, Reis RL (2015) Preparation of macroporous alginate-based aerogels for biomedical applications. J Supercrit Fluids 106:152–159. doi:https://doi.org/10.1016/j.supflu.2015.05.010

    Article  CAS  Google Scholar 

  31. Dumitriu RP, Oprea AM, Natalia Cheaburu C, Nistor MT, Novac O, Ghiciuc CM, Profire L, Vasile C (2014) Biocompatible and biodegradable alginate/poly(N-isopropylacrylamide) hydrogels for sustained theophylline release. J Appl Polym Sci 131:8939–8954. doi:https://doi.org/10.1002/app.40733

    Article  CAS  Google Scholar 

  32. Daemi H, Barikani M, Sardon H (2017) Transition-metal-free synthesis of supramolecular ionic alginate-based polyurethanes. Carbohydr Polym 157:1949–1954. doi:https://doi.org/10.1016/j.carbpol.2016.11.086

    Article  CAS  PubMed  Google Scholar 

  33. Galus S, Lenart A (2013) Development and characterization of composite edible films based on sodium alginate and pectin. J Food Eng 115:459–465. doi:https://doi.org/10.1016/j.jfoodeng.2012.03.006

    Article  CAS  Google Scholar 

  34. Karakasyan C, Mathos J, Lack S, Davy J, Marquis M, Renard D (2015) Microfluidics-assisted generation of stimuli-responsive hydrogels based on alginates incorporated with thermo-responsive and amphiphilic polymers as novel biomaterials. Colloids Surf B 135:219–629. https://doi.org/10.1016/j.colsurfb.2015.08.028

    Article  CAS  Google Scholar 

  35. Kulkarni RV, Boppana R, Krishna Mohan G, Mutalik S, Kalyane NV (2012) PH-responsive interpenetrating network hydrogel beads of poly(acrylamide)-g-carrageenan and sodium alginate for intestinal targeted drug delivery: synthesis, in vitro and in vivo evaluation. J Colloid Interface Sci 367:509–517. https://doi.org/10.1016/j.jcis.2011.10.025

    Article  CAS  PubMed  Google Scholar 

  36. Olivas GI, Barbosa-Cánovas GV (2008) Alginate-calcium films: water vapor permeability and mechanical properties as affected by plasticizer and relative humidity. LWT-Food Sci Technol 41:359–366. https://doi.org/10.1016/j.lwt.2007.02.015

    Article  CAS  Google Scholar 

  37. Orsuwan A, Shankar S, Wang LF, Sothornvit R, Rhim JW (2016) Preparation of antimicrobial agar/banana powder blend films reinforced with silver nanoparticles. Food Hydrocoll 60:476–485. doi:https://doi.org/10.1016/j.foodhyd.2016.04.017

    Article  CAS  Google Scholar 

  38. Wang J, Wei J, Su S, Qiu J, Wang S (2015) Ion-linked double-network hydrogel with high toughness and stiffness. J Mater Sci 50:5458–5465. doi:https://doi.org/10.1007/s10853-015-9091-0

    Article  CAS  Google Scholar 

  39. Liu Y, Zhao JC, Zhang CJ, Guo Y, Zhu P, Wang DY (2016) Effect of manganese and cobalt ions on flame retardancy and thermal degradation of bio-based alginate films. J Mater Sci 51:1052–1065. doi:https://doi.org/10.1007/s10853-015-9435-9

    Article  CAS  Google Scholar 

  40. Duceppe N, Tabrizian M (2010) Advances in using chitosan-based nanoparticles for in vitro and in vivo drug and gene delivery. Expert Opin Drug Deliv 7:1191–1207. doi:https://doi.org/10.1517/17425247.2010.514604

    Article  CAS  PubMed  Google Scholar 

  41. Meng X, Tian F, Yang J, He CN, Xing N, Li F (2010) Chitosan and alginate polyelectrolyte complex membranes and their properties for wound dressing application. J Mater Sci Mater Med 21:1751–1759. doi:https://doi.org/10.1007/s10856-010-3996-6

    Article  CAS  PubMed  Google Scholar 

  42. Ma S, Chen Z, Qiao F, Sun Y, Yang X, Deng X, Cen L, Cai Q, Wu M, Zhang X et al (2014) Guided bone regeneration with tripolyphosphate cross-linked asymmetric chitosan membrane. J Dent 42:1603–1612. doi:https://doi.org/10.1016/j.jdent.2014.08.015

    Article  CAS  PubMed  Google Scholar 

  43. Sikareepaisan P, Ruktanonchai U, Supaphol P (2011) Preparation and characterization of asiaticoside-loaded alginate films and their potential for use as effectual wound dressings. Carbohydr Polym 83:1457–1469. doi:https://doi.org/10.1016/j.carbpol.2010.09.048

    Article  CAS  Google Scholar 

  44. Edison TNJI, Lee YR, Sethuraman MG (2016) Green synthesis of silver nanoparticles using Terminalia cuneata and its catalytic action in reduction of direct yellow-12 dye. Spectrochim Acta Part A 161:122–129. https://doi.org/10.1016/j.saa.2016.02.044

    Article  CAS  Google Scholar 

  45. Ren Y, Yang H, Wang T, Wang C (2016) Green synthesis and antimicrobial activity of monodisperse silver nanoparticles synthesized using Ginkgo Biloba leaf extract. Phys Lett Sect A  380:3773–3777. https://doi.org/10.1016/j.physleta.2016.09.029

    Article  CAS  Google Scholar 

  46. Kanmani P, Rhim JW (2014) Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles. Carbohydr Polym 106:190–199. doi:https://doi.org/10.1016/j.carbpol.2014.02.007

    Article  CAS  PubMed  Google Scholar 

  47. Bierhalz ACK, da Silva MA, Braga MEM, Sousa HJC, Kieckbusch TG (2014) Effect of calcium and/or barium crosslinking on the physical and antimicrobial properties of natamycin-loaded alginate films. LWT-Food Sci Technol 57:494–501. https://doi.org/10.1016/j.lwt.2014.02.021

    Article  CAS  Google Scholar 

  48. Ahmad MB, Lim JJ, Shameli K, Ibrahim NA, Tay MY (2011) Synthesis of silver nanoparticles in chitosan, gelatin and chitosan/gelatin bionanocomposites by a chemical reducing agent and their characterization. Molecules 16:7237–7248. doi:https://doi.org/10.3390/molecules16097237

    Article  CAS  Google Scholar 

  49. Namratha N, Monica PV (2013) Synthesis of silver nanoparticles using Azadirachta indica (Neem) extract and usage in water purification. Asian J Pharm Technol 3:170–174

    Google Scholar 

  50. Lalitha A, Subbaiya R, Ponmurugan P (2013) Green synthesis of silver nanoparticles from leaf extract Azhadirachta indica and to study its anti-bacterial and antioxidant property. Int J Curr Microbiol Appl Sci 2:228–235

    Google Scholar 

  51. Suman TY, Radhika Rajasree SR, Kanchana A, Elizabeth SB (2013) Biosynthesis, characterization and cytotoxic effect of plant mediated silver nanoparticles using Morinda citrifolia root extract. Colloids Surf B 106:74–78. https://doi.org/10.1016/j.colsurfb.2013.01.037

    Article  CAS  Google Scholar 

  52. Barabadi H, Honary S, Ebrahimi P, Alizadeh A, Naghibi F, Saravanan M (2019) Optimization of myco-synthesized silver nanoparticles by response surface methodology employing Box-Behnken design. Inorg Nano-Metal Chem 49:33–43. doi:https://doi.org/10.1080/24701556.2019.1583251

    Article  CAS  Google Scholar 

  53. Venil CK, Sathishkumar P, Malathi M, Usha R, Jayakumar R, Yusoff ARM, Ahmad WA (2016) Synthesis of flexirubin-mediated silver nanoparticles using Chryseobacterium artocarpi CECT 8497 and investigation of its anticancer activity. Mater Sci Eng C 59:228–234. https://doi.org/10.1016/j.msec.2015.10.019

    Article  CAS  Google Scholar 

  54. Oun AA, Rhim JW (2017) Preparation of multifunctional chitin nanowhiskers/ZnO-Ag NPs and their effect on the properties of carboxymethyl cellulose-based nanocomposite film. Carbohydr Polym 169:467–479. doi:https://doi.org/10.1016/j.carbpol.2017.04.042

    Article  CAS  PubMed  Google Scholar 

  55. Shankar S, Rhim JW (2015) Amino acid mediated synthesis of silver nanoparticles and preparation of antimicrobial agar/silver nanoparticles composite films. Carbohydr Polym 130:353–363. doi:https://doi.org/10.1016/j.carbpol.2015.05.018

    Article  CAS  PubMed  Google Scholar 

  56. Taokaew S, Seetabhawang S, Siripong P, Phisalaphong M (2013) Biosynthesis and characterization of nanocellulose-gelatin films. Materials 6:782–794. https://doi.org/10.3390/ma6030782

    Article  PubMed  PubMed Central  Google Scholar 

  57. Pereira R, Tojeira A, Vaz DC, Mendes A, Bártolo P (2011) Preparation and characterization of films based on alginate and aloe vera. Int J Polym Anal Charact 16:449–464. doi:https://doi.org/10.1080/1023666X.2011.599923

    Article  CAS  Google Scholar 

  58. Singhal G, Bhavesh R, Kasariya K, Sharma AR, Singh RP (2011) Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. J Nanoparticle Res 13:2981–2988. https://doi.org/10.1007/s11051-010-0193-y

    Article  CAS  Google Scholar 

  59. Sharma S, Kumar S, Bulchandani BD, Taneja S, Banyal S (2013) Green synthesis of silver nanoparticles and their antimicrobial activity against gram positive and gram negative bacteria. Int J Biotexhnol Bioeng Res 4:711–714

    Google Scholar 

  60. Ibrahim HMM (2015) ScienceDirect Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J Radiat Res Appl Sci 8:1–11. doi:https://doi.org/10.1016/j.jrras.2015.01.007

    Article  CAS  Google Scholar 

  61. Kameswara Srikar S, Giri DD, Pal DB, Mishra PK, Upadhyay SN (2016) Green synthesis of silver nanoparticles: a review. Green Sustain Chem 6:34–56. https://doi.org/10.4236/gsc.2016.61004

    Article  CAS  Google Scholar 

  62. Zhang S, Tang Y, Vlahovic BA (2016) Review on preparation and applications of silver-containing nanofibers. Nanoscale Res Lett 11:1–8. https://doi.org/10.1186/s11671-016-1286-z

    Article  CAS  Google Scholar 

  63. Li MC, Wu Q, Song K, Cheng HN, Suzuki S, Lei T (2016) Chitin nanofibers as reinforcing and antimicrobial agents in carboxymethyl cellulose films: influence of partial deacetylation. ACS Sustain Chem Eng 4:4385–4395. https://doi.org/10.1021/acssuschemeng.6b00981

    Article  CAS  Google Scholar 

  64. Weerakkody NS, Caffin N, Turner MS, Dykes GA (2010) In vitro antimicrobial activity of less-utilized spice and herb extracts against selected food-borne bacteria. Food Control 21:1408–1414. doi:https://doi.org/10.1016/j.foodcont.2010.04.014

    Article  CAS  Google Scholar 

  65. Hosseini MH, Razavi SH, Mousavi MA, Antimicrobial (2009) physical and mechanical properties of chitosan-based films incorporated with thyme, clove and cinnamon essential oils. J Food Process Preserv 33:727–743. doi:https://doi.org/10.1111/j.1745-4549.2008.00307.x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was as a part of M.Sc. Project work of Mr. Apparao Gudimalla and self-funded research. AG wants to express his thanks to Ms. Rajakumari R and Ms. Merina Luke for the valuable discussions and assistance in diffusion experiments during the course of the work.

Author information

Authors and Affiliations

Authors

Contributions

AG and JJ conceived and designed the research work. AG conducted all experiments, characterizations and wrote the manuscript. JJ, JV and ST contributed the lab facilities, reagents and analytical tools as well as supervised the research. All authors read and approved the manuscript.

Corresponding author

Correspondence to Apparao Gudimalla.

Ethics declarations

Conflict of interest

The authors have no potential conflicts of interest to disclose.

Research Involving Human and Animal Rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gudimalla, A., Jose, J., Varghese, R. et al. Green Synthesis of Silver Nanoparticles Using Nymphae odorata Extract Incorporated Films and Antimicrobial Activity. J Polym Environ 29, 1412–1423 (2021). https://doi.org/10.1007/s10924-020-01959-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01959-6

Keywords

Navigation