Skip to main content

Advertisement

Log in

Synthesis and Modification of Polyurethane Foam Doped with Multi-walled Carbon Nanotubes for Cleaning up Spilled Oil from Water

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Marine oil spills have raised widespread environmental concerns. Adsorbents with high oil absorption efficiency and reusability are highly desirable. This paper demonstrates a technical route for the manufacture of polyurethane-based adsorbents, aiming at developing robust and efficient materials for treating oil-contaminated water or remedying emergency oil spill accidents. The investigation includes the synthesis of polyurethanes modified with multi-walled carbon nanotubes, the characterizations of their properties, and the analysis of the capacity and feasibility of their applications in oil–water separation. The compositions of the products were characterized by FTIR, XPS, and Raman spectroscopy; the morphologies were analyzed by SEM; the hydrophobicities were tested by the water contact angle, and the thermal properties by TGA; the mechanical properties were depicted by Young’s modulus and the tensile-strain response performance; and the measurements of the absorption capacities and their performance in applications for oils-water separation were conducted in a self-designed apparatus and determined by gravimetric analysis. The results indicate that the developed adsorbents are superhydrophobic and highly robust with a water contact angle of 159°, tensile strain 27% higher and compressive strain 35% lower than regular polyurethanes, absorption capacity up to 60 g g−1, and reusability of 900 absorption–desorption cycles. The high oil absorption efficiency, capacity, and reusability of the adsorbents were confirmed by various oil/organics-water systems, such as engine oil-, silicone oil-, chloroform-, hexane-, toluene-, and kerosene-water system. It is concluded that the adsorbents are efficient not only for floating oils/organics-water but also for well dispersed or mixed oils/organics-water systems; and they can be operated in not only a batch mode for high absorption–desorption cycles but also in a continuous mode for a long operational period, which exhibits great potential and is of particular interest for the adsorbents to be used in large scale oil/organics spill cleanups.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ivshina I, Kuyukina M, Krivoruchko A, Elkin A, Makarov S, Cunningham C, Peshkur T, Atlas R, Philp J (2015) Environ Sci Process Impacts 17:1201–1219

    Article  CAS  PubMed  Google Scholar 

  2. Dave D, Ghaly A (2011) Am J Environ Sci 7:423–440

    Article  CAS  Google Scholar 

  3. Al-Majed A, Adebayo A, Hossain M (2012) J Environ Manag 113:213–227

    Article  Google Scholar 

  4. Ge J, Zhao H, Zhu H, Huang J, Shi L, Yu S (2016) Adv Mater 28:10459–10490

    Article  CAS  PubMed  Google Scholar 

  5. David D, George W, Howard R, William D, Kevin B (2001) J Res Natl Inst Stand Technol 106:231–278

    Article  Google Scholar 

  6. Bhairavi D, Mika S, Simo K (2018) Water Res 135:262–277

    Article  CAS  Google Scholar 

  7. Yu C-L, Yu C-M, Cui L, Song Z, Zhao X, Ma Y, Jiang L (2016) Adv Mater Interfaces 4:1600862

    Article  CAS  Google Scholar 

  8. Zhang A, Chen M, Guo H, Bai H, Li L (2013) ACS Appl Mater Interfaces 5:10201–10206

    Article  CAS  PubMed  Google Scholar 

  9. Zhou S, Hao G, Zhou X, Jiang W, Wang T, Zhang N, Yu L (2016) Chem Eng J 302:155–162

    Article  CAS  Google Scholar 

  10. Zhang X, Liu D, Sui G (2017) Adv Mater Interfaces 5:1701094

    Article  CAS  Google Scholar 

  11. Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, Song Y, Liu B, Jiang L, Zhu D (2002) Adv Mater 14:1857–1860

    Article  CAS  Google Scholar 

  12. Bharat B, Yong C (2011) Prog Mater Sci 56:1–108

    Article  CAS  Google Scholar 

  13. Zhang X, Li Z, Liu K, Jiang L (2013) Adv Funct Mater 23:2881–2886

    Article  CAS  Google Scholar 

  14. Wu L, Li L, Li B, Zhang J, Wang A (2015) ACS Appl Mater Interfaces 7:4936–4946

    Article  CAS  PubMed  Google Scholar 

  15. Wei Q, Oribayo O, Feng X, Rempel G, Pan Q (2018) Ind Eng Chem Res 57:8918–8926

    Article  CAS  Google Scholar 

  16. Oribayo O, Feng X, Rempel G, Pan Q (2017) Chem Eng J 323:191–202

    Article  CAS  Google Scholar 

  17. Lv W, Mei Q, Xiao J, Du M, Zheng Q (2017) Adv Funct Mater 27:1704293

    Article  CAS  Google Scholar 

  18. Kuzumaki T, Mitsuda Y (2006) Jpn J Appl Phys 45:364–368

    Article  CAS  Google Scholar 

  19. Kevin A, Billy A, Kaitlin E, Hannah K, Stephen R, Howard D (2011) Carbon 49:24–36

    Article  CAS  Google Scholar 

  20. Shen J, Huang W, Wu L, Hu Y, Ye M (2007) Mater Sci Eng A 464:151–156

    Article  CAS  Google Scholar 

  21. Shen J, Huang W, Wu L, Hu Y, Ye M (2007) Composites Part A 38:1331–1336

    Article  CAS  Google Scholar 

  22. Shen J, Huang W, Wu L, Hu Y, Ye M (2007) Sci Technol 67:3041–3050

    CAS  Google Scholar 

  23. Simon J, Peles D (2010) Acc Chem Res 43:1452–1460

    Article  CAS  PubMed  Google Scholar 

  24. Cao Y, Zhang X, Tao L, Li K, Xue Z, Feng L, Wei Y (2013) ACS Appl Mater Interfaces 5:4438–4442

    Article  CAS  PubMed  Google Scholar 

  25. Zhang X, Liu M, Zhang Y, Yang B, Ji Y, Feng L, Tao L, Li S, Wei Y (2012) RSC Adv 2:12153–12155

    Article  CAS  Google Scholar 

  26. Chen S, Wu G, Liu Y, Long D (2006) Macromolecules 39:330–334

    Article  CAS  Google Scholar 

  27. Sunanda R, Tanya D, Yue C, Hu X (2013) ACS Appl Mater Interfaces 6:664–670

    Google Scholar 

  28. Zangmeister R, Morris T, Tarlov M (2013) Langmuir 29:8619–8628

    Article  CAS  PubMed  Google Scholar 

  29. Hou P, Bai S, Yang Q, Liu C, Cheng H (2002) Carbon 40:81–85

    Article  CAS  Google Scholar 

  30. Martínez M, Callejas M, Benito A, Cochet M, Seeger T, Ansón A, Schreiber J, Gordon C, Marhic C, Chauvet O, Maser W (2003) Nanotechnology 14:691–695

    Article  Google Scholar 

  31. Lee H, Dellatore S, Miller W, Messersmith P (2007) Science 318:426–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bokobza L, Bruneel J, Couzi M (2013) Chem Phys Lett 590:153–159

    Article  CAS  Google Scholar 

  33. Song S, Yang H, Su C, Jiang Z, Lu Z (2016) Chem Eng J 306:504–511

    Article  CAS  Google Scholar 

  34. Oribayo O, Feng X, Rempel G, Pan Q (2016) Chem Eng Sci 160:384–395

    Article  CAS  Google Scholar 

  35. Yun S, Kim J, Jung M, Nho Y, Kang P, Lee Y (2007) Carbon Lett 8:292–298

    Article  Google Scholar 

  36. Chiang Y, Lin W, Chang Y (2011) Appl Surf Sci 257:2401–2410

    Article  CAS  Google Scholar 

  37. Lee J, Kim J, Lim S, Kim T, Kim S, Park S, Lee Y (2007) Carbon Sci 8:120–126

    Article  Google Scholar 

  38. Iwona P, Urszula N, Dariusz M (2012) J Mater Res 27:2368–2374

    Article  CAS  Google Scholar 

  39. Brown P, Bhushan B (2015) Sci Rep 5:1–16

    Google Scholar 

  40. Maryam B, Akbar S, Ali M (2011) Polym Int 60:475–482

    Article  CAS  Google Scholar 

  41. Ramin S, Mojtaba M, Mojtaba K (2016) J Appl Polym Sci 134:44567

    Google Scholar 

Download references

Acknowledgements

Financial support from the National Natural Science Foundation of China (No. 21176163; No. 21576174), Suzhou Industrial Park, the Priority Academic Program Development of Jiangsu Higher Education Institutions and the Program of Innovative Research Team of Soochow University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinmin Pan.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 6 (DOCX 12438 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Lin, S., Feng, X. et al. Synthesis and Modification of Polyurethane Foam Doped with Multi-walled Carbon Nanotubes for Cleaning up Spilled Oil from Water. J Polym Environ 29, 1271–1286 (2021). https://doi.org/10.1007/s10924-020-01942-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01942-1

Keywords

Navigation