Skip to main content

Advertisement

Log in

Characterization and Production of a Polyhydroxyalkanoate from Cassava Peel Waste: Manufacture of Biopolymer Microfibers by Electrospinning

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Hydrolysate cassava peel obtained from agro-industrial residues was used as a carbon source in the production of polyhydroxyalkanoates (PHAs) by Cupriavidus necator. The optimum culture conditions were pH 9, a C/N ratio of 11, and a C/P ratio of 7. Characterization of the PHA polymers by FTIR, DSC and GC–MS revealed copolymers consisting of 3HB and 3HV monomers with melting temperatures (Tm) between 100 and 150 °C. Random and aligned microfibers with average diameters of 1.56 ± 0.41 μm and 1.72 ± 0.52 μm, respectively, were produced by electrospinning. In general, it was possible to obtain PHAs from cassava peel, and PHAs could be applied to produce fibers by electrospinning. The above strategy is an alternative use of agro-industrial cassava waste and opens up potential applications in the manufacture of biopolymers for their use in industry and biomedicine.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Red de Información y Comunicación del Sector Agropecuario de Colombia. www.agronet.gov.co

  2. Sugumaran KR, Jothi P, Ponnusami V (2014) Bioconversion of industrial solid waste—Cassava bagasse for pullulan production in solid state fermentation. Carbohydr Polym 99:22–30

    CAS  PubMed  Google Scholar 

  3. Ogbo FC (2010) Bioresour Technol 101(11):4120–4124

    CAS  PubMed  Google Scholar 

  4. Kurniawan A, Kosasih AN, Febrianto J, Ju YH, Sunarso J, Indraswati N, Ismadji S (2011) Chem Eng J 172(1):158–166

    CAS  Google Scholar 

  5. Okudoh V, Trois C, Workneh T, Schmidt S (2014) Renew Sustain Energy Rev 39:1035–1052

    Google Scholar 

  6. Maraveas C (2020) Polymers 12(5):1127. https://doi.org/10.3390/polym12051127

    Article  CAS  PubMed Central  Google Scholar 

  7. Maraveas C (2020) Materials 13(2):262. https://doi.org/10.3390/ma13020262

    Article  CAS  PubMed Central  Google Scholar 

  8. Shrivastav A, Mishra SK, Shethia B, Pancha I, Jain D, Mishra S (2010) Int J Biol Macromol 47(2):283–287

    CAS  PubMed  Google Scholar 

  9. López-Cuellar MR, Alba-Flores J, Rodríguez JNG, Pérez-Guevara F (2011) Int J Biol Macromol 48(1):74–80

    PubMed  Google Scholar 

  10. Simon-Colin C, Gouin C, Lemechko P, Schmitt S, Senant A, Kervarec N, Guezennec J (2012) Int J Biol Macromol 51(5):1063–1069

    CAS  PubMed  Google Scholar 

  11. Keshavarz T, Roy I (2010) Curr Opin Microbiol 13(3):321–326

    CAS  PubMed  Google Scholar 

  12. Tripathi AD, Srivastava SK, Singh RP (2013) Biomass Bioenerg 55:243–250

    CAS  Google Scholar 

  13. Oliveira FC, Dias ML, Castilho LR, Freire DMG (2007) C Bioresour Technol 98(3):633–638

    CAS  Google Scholar 

  14. Silva JA, Tobella LM, Becerra J, Godoy F, Martínez MA (2007) J Biosci Bioeng 103(6):542–546

    CAS  PubMed  Google Scholar 

  15. Thakor N, Trivedi U, Patel KC (2005) Bioresour Technol 96(17):1843–1850

    CAS  PubMed  Google Scholar 

  16. Barbosa M, Espinosa A, Malagón D, Moreno N (2005) Revista de la Facultad de Ciencias Pontificia Universidad Javeriana 10:45–54

    Google Scholar 

  17. Bosco F, Chiampo F (2010) J Biosci Bioeng 109(4):418–421

    CAS  PubMed  Google Scholar 

  18. Cavalheiro JMBT, de Almeida MCMD, Grandfils C, da Fonseca MMR (2009) Process Biochem 44(5):509–515

    CAS  Google Scholar 

  19. Castilho LR, Mitchell DA, Freire DMG (2009) Bioresour Technol 100(23):5996–6009

    CAS  PubMed  Google Scholar 

  20. Poomipuk N, Reungsang A, Plangklang P (2014) Int J Biol Macromol 65:51–64

    CAS  PubMed  Google Scholar 

  21. Chaleomrum N, Chookietwattana K, Dararat S (2014) APCBEE Procedia 8:167–172

    CAS  Google Scholar 

  22. Krueger C, Radetski C, Bendia A, Oliveira I, Castro-Silva M, Rambo C, Antonio R, Lima A (2012) Electron J Biotechnol 15(3):1–10

    Google Scholar 

  23. Ramadas NV, Kumar SS, Ricardo SC, Ashok P (2009) Braz Arch Biol Technol 52(1):17–23

    CAS  Google Scholar 

  24. Sathiyanarayanan G, Kiran GS, Selvin J, Saibaba G (2013) Int J Biol Macromol 60:253–261

    CAS  PubMed  Google Scholar 

  25. Kim BS, Chang HN (1995) Biotechnol Tech 9(5):311–314

    CAS  Google Scholar 

  26. Zinn M, Witholt B, Egli T (2001) Adv Drug Deliv Rev 53(1):5–21

    CAS  PubMed  Google Scholar 

  27. Canadas RF, Cavalheiro JMBT, Guerreiro JDT, de Almeida MCMD, Pollet E, da Silva CL, Ferreira FC (2014) Int J Biol Macromol 71:131–140

    CAS  PubMed  Google Scholar 

  28. Tatiana Volova, Goncharov Dmitriy, Sukovatyi Aleksey, Shabanov Alexander, Nikolaeva Elena, Shishatskaya Ekaterina (2013) J Biomater Sci 25:370–393

    Google Scholar 

  29. Ramier J, Bouderlique T, Stoilova O, Manolova N, Rashkov I, Langlois V, Grande D (2014) Mater Sci Eng C 38:161–169

    CAS  Google Scholar 

  30. Fabra MJ, Lopez-Rubio A, Lagaron JM (2015) Food Hydrocolloids 44:292–299

    CAS  Google Scholar 

  31. Khanna S, Srivastava AK (2005) Biotechnol Lett 27(18):1401–1403

    CAS  PubMed  Google Scholar 

  32. AOAC (2005) Official methods of analysis, 18th edn. Association of Official AnalyticalChemists, Gaithersburg

    Google Scholar 

  33. Vega-Castro O, Contreras-Calderon J, León E, Segura A, Arias M, Pérez L, Sobral PJA (2016) J Biotechnol 231:232–238

    CAS  PubMed  Google Scholar 

  34. Johnson K, Kleerebezem R, van Loosdrecht M (2010) Water Res 44(7):2141–2152

    CAS  PubMed  Google Scholar 

  35. Annamalai N, Sivakumar N (2016) J Biotechnol 237:13–17

    CAS  PubMed  Google Scholar 

  36. Ashby RD, Solaiman DKY, Foglia TA (2004) J Polym Environ 12:105–112

    CAS  Google Scholar 

  37. Hong K, Sun S, Tian W, Chen GQ, Huang W (1999) Appl Microbiol Biotechnol 51(4):523–526

    CAS  Google Scholar 

  38. Luo R, Chen J, Zhang L, Chen G (2006) Biochem Eng J 32(3):218–225

    CAS  Google Scholar 

  39. Doi Y, Kunioka M, Nakamura Y, Soga K (1986) Macromolecules 19:2860–2864

    CAS  Google Scholar 

  40. Rosengart A, Cesário MT, de Almeida MCMD, Raposo RS, Espert A, de Apodaca ED, da Fonseca MMR (2015) Biochem Eng J 103:39–46

    CAS  Google Scholar 

  41. Ki OL, Kurniawan A, Lin CX, Ju Y-H, Ismadji S (2013) Bioresour Technol 145:157–161

    CAS  PubMed  Google Scholar 

  42. Moshi AP, Temu SG, Nges IA, Malmo G, Hosea KMM, Elisante E, Mattiasson B (2015) Chem Eng J 279:297–306

    CAS  Google Scholar 

  43. Sudaryanto Y, Hartono SB, Irawaty W, Hindarso H, Ismadji S (2006) Bioresour Technol 97(5):734–739

    CAS  PubMed  Google Scholar 

  44. Hermiati E, Azuma J, Mangunwidjaja D, Sunarti T, Suparno O, Prasetya B (2011) Indones J Chem 11:238–245

    Google Scholar 

  45. Hermiati E, Azuma J, Tsubaki S, Mangunwidjaja D, Sunarti TC, Suparno O, Prasetya B (2012) Carbohydr Polym 87(1):939–942

    CAS  Google Scholar 

  46. Kongkiattikajorn J, Yoonan KA (2004) Kasetsart J (Nat Sci) 38:29–35

    Google Scholar 

  47. Saratale GD, Oh MK (2015) Int J Biol Macromol 80:627–635

    CAS  PubMed  Google Scholar 

  48. Povolo S, Toffano P, Basaglia M, Casella S (2010) Bioresour Technol 101(20):7902–7907

    CAS  PubMed  Google Scholar 

  49. Khanna S, Srivastava AK (2005) Process Biochem 40(6):2173–2182

    CAS  Google Scholar 

  50. Huang L, Liu C, Liu Y, Jia X (2016) Waste Manag 52:77–85

    CAS  PubMed  Google Scholar 

  51. Weng Y-X, Wang X-L, Wang Y-Z (2011) Polym Test 30(4):372–380

    CAS  Google Scholar 

  52. Lim ST, Hyun YH, Lee CH, Choi HJ (2003) J Mater Sci Lett 22:299–302

    CAS  Google Scholar 

  53. López-Cortés A, Rodríguez-Fernández O, Latisnere-Barragán H, Mejía-Ruíz H, González-Gutiérrez G, Lomelí-Ortega C (2010) World J Microbiol Biotechnol 26:109–118

    Google Scholar 

  54. Langlois V, Randriamahefa S, Renard E, Guérin P (2003) Biomacromol 4:1092–1097

    Google Scholar 

  55. Misra AK, Thakur MS, Srinivas P, Karanth NG (2000) Biotech Lett 22(15):1217–1219

    CAS  Google Scholar 

  56. Kansiz M, Billman-Jacobe H, McNaughton D (2000) Appl Environ Microbiol 66(8):3415–3420

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Kelley AS, Srienc F (1999) Int J Biol Macromol 25:61–67

    CAS  PubMed  Google Scholar 

  58. Chen J, Zhang L, Chen J, Chen G (2007) Chin J Chem Eng 15(3):391–396

    CAS  Google Scholar 

  59. Razaghi A, Karthikeyan OP, Hao HTN, Heimann K (2016) Bioresour Technol 217:100–103

    CAS  PubMed  Google Scholar 

  60. Aldor IS, Kim S-W, Jones Prather KL, Keasling JD (2002) Appl Environ Microbiol 68(8):3848–3854

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Karthikeyan OP, Selvam A, Wong JWC (2016) Bioresour Technol 200:366–373

    CAS  PubMed  Google Scholar 

  62. Kumar P, Ray S, Kalia V (2016) Bioresour Technol 200:413–419

    CAS  PubMed  Google Scholar 

  63. Lee Yeol E, Yong Choi C (1997) Biotechnol Tech 11(3):167–171

    Google Scholar 

  64. Ashby RD, Solaiman DKY, Foglia TA (2005) Biomacromol 6(4):2106–2112

    CAS  Google Scholar 

  65. Frenot A, Chronakis IS (2003) Curr Opin Colloid Interface Sci 8(1):64–75

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge COLCIENCIAS for financing the Research Project 630-2011, as well as the research group BIOALI and the Research and Extension Center of Faculty Food and Pharmaceutical Science of Antioquia University. The authors acknowledge funding for iBB-Institute for Bioengineering and Biosciences from Portuguese Foundation for Science and Technology (FCT), Portugal State Budget and Lisbon’s Regional Operational Programme 2014-2020 (PORL2020), European structural and investment funds—European commission (FCT Reference: UID/BIO/04565/2013 and POL2020 Reference 007317, including iBB Grant iBB/2015/18), as well as funding from PORL2020 to the Research and Development Project Grant from the Joint Activities Programme “PRECISE” (Reference 016394). Finally, the sustainability program of the research groups of Antioquia University (2014–2016) is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Vega-Castro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vega-Castro, O., León, E., Arias, M. et al. Characterization and Production of a Polyhydroxyalkanoate from Cassava Peel Waste: Manufacture of Biopolymer Microfibers by Electrospinning. J Polym Environ 29, 187–200 (2021). https://doi.org/10.1007/s10924-020-01861-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01861-1

Keywords

Navigation