Skip to main content
Log in

Preparation and Characterization of Lignin Microparticles-in-Alginate Beads for Atrazine Controlled Release

  • Original paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The use of lignin as polymeric matrices for controlled release systems in agriculture is a promising alternative for its revalorization. In this work, different atrazine delivery systems were studied. Lignin derived from ionic isolation was used for the preparation of atrazine-loaded microparticles by the solvent extraction/evaporation and microfluidic techniques. Microparticles were also encapsulated in sodium alginate beads. Lignin microparticles prepared by microfluidics presented a larger particle size, higher encapsulation efficiency and a narrow size distribution. The in vitro release of atrazine was evaluated in water. Atrazine release from microparticles prepared by the solvent extraction/evaporation technique showed a significant burst release, and this effect was reduced by incorporating microparticles within alginate beads. In addition, the phytotoxicity of the systems was evaluated employing Lactuca sativa seeds. The phytotoxicity results showed that lignin-based formulations are safe according to the parameters evaluated, in contrast with commercial atrazine that resulted phytotoxic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Huang B, Chen F, Shen Y, Qian K, Wang Y, Sun C, Zhao X, Cui B, Gao F, Zeng Z, Cui H (2018) Nanomaterials 8:102

    PubMed Central  Google Scholar 

  2. Li T, Teng D, Mao R, Hao Y, Wang X, Wang J (2019) J Biomed Mater Res A 25:256. https://doi.org/10.1002/jbm.a.36739

    Article  CAS  Google Scholar 

  3. Fernández-Pérez M, Flores-Céspedes F, González-Pradas E, Villafranca-Sánchez M, Pérez-García S, Garrido-Herrera FJ (2004) J Agric Food Chem 52:3888

    PubMed  Google Scholar 

  4. Fernández-Pérez M, González-Pradas E, Villafranca-Sánchez M, Flores-Céspedes F (2001) Chemosphere 43:347

    PubMed  Google Scholar 

  5. Yusoff SNM, Kamari A, Aljafree NFA (2016) Int J Environ Sci Technol 13:2977

    Google Scholar 

  6. Köse MD, Bayraktar O, Heinz ÖK (2018) In: Grumezescu AM (ed) Design and development of new nanocarriers. William Andrew Publishing, Norwich, p 475

    Google Scholar 

  7. Hedaoo RK, Gite VV (2014) RSC Adv 4:18637

    CAS  Google Scholar 

  8. Bagle AV, Jadhav RS, Gite VV, Hundiwale DG. Mahulikar PP (2013) Int J Polym Mater 62:421

    CAS  Google Scholar 

  9. Paik S (2006) Mater Sci Forum 510:678

    Google Scholar 

  10. Bareras-Urbina CG, Ramírez-Wong B, López-Ahumada GA, Burruel-Ibarra SE, Martínez-Cruz O, Tapia-Hernández JA, Rodriguez Felix F (2016) Int J Food Prop 19:1912

    CAS  Google Scholar 

  11. Pereira AE, Grillo R, Mello NF, Rosa AH, Fraceto LF (2014) J Hazard Mater 268:207

    CAS  PubMed  Google Scholar 

  12. Liu B, Wang Y, Yang F, Wang X, Shen H, Cui H, Wu D (2016) Colloids Surf B 144:38

    CAS  Google Scholar 

  13. Xu Q, Hashimoto M, Dang TT, Hoare T, Kohane DS, Whitesides GM, Langer R, Anderson DG (2009) Small 5:1575

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Leon RAL, Somasundar A, Badruddoza AZM, Khan SA (2015) Part Part Syst Charact 32:567

    CAS  Google Scholar 

  15. Rinsky JL, Hopenhayn C, Golla V, Browning S, Bush HM (2012) Public Health Rep 127:72

    PubMed  PubMed Central  Google Scholar 

  16. Nwani CD, Lakra WS, Nagpure NS, Kumar R, Kushwaha B, Srivastava SK (2010) Int J Environ Res 7:3298

    CAS  Google Scholar 

  17. Gammon DW, Aldous CN, Carr WC Jr, Sanborn JR, Pfeifer KF (2015) Pest Manag Sci 61:331

    Google Scholar 

  18. Khan JA, Shah NS, Khan HM (2015) Sep Purif Technol 156:140

    CAS  Google Scholar 

  19. Stayner LT, Almberg K, Jones R, Graber J, Pedersen M, Turyk M (2017) Environ Res 152:294

    CAS  PubMed  Google Scholar 

  20. Grillo R, de Melo NFS, de Lima R, Wagner Lourenço R, Rosa AH, Fernandes Fraceto L (2010) J Polym Environ 18:26

    CAS  Google Scholar 

  21. Oliveira HC, Stolf-Moreira R, Martinez CBR, Grillo R, de Jesus MB, Fraceto LF (2015) PLoS ONE 10:e0132971

    PubMed  PubMed Central  Google Scholar 

  22. de Oliveira JL, Campos EVR, Gonçalves da Silva CM, Pasquoto T, Lima R, Fraceto LF (2015) J Agric Food Chem 63:422

    PubMed  Google Scholar 

  23. Chen X-T, Wang T (2019) J Integr Agr 18:1035

    CAS  Google Scholar 

  24. Sharma P, Rohilla D, Chaudhary S, Kumar R, Singh AN (2019) Sci Total Environ 653:264

    CAS  PubMed  Google Scholar 

  25. Andrade LLD, do Espirito Santo Pereira A, Fraceto LF,dos Reis Martinez CB (2019) Sci Total Environ 663:548.

    PubMed  Google Scholar 

  26. Campos EVR, De Oliveira JL, Fraceto LF, Singh B (2015) Agron Sustain Dev 35:47

    CAS  Google Scholar 

  27. Kumar S, Bhanjana G, Sharma A, Sidhu MC, Dilbaghi N (2014) Carbohyd Polym 101:1061

    CAS  Google Scholar 

  28. Zhao D, Zhang Y, Lv L, Li J (2013) Polym Eng Sci 53:609

    CAS  Google Scholar 

  29. Taverna ME, Busatto CA, Lescano M, Nicolau V, Zalazar CS, Estenoz DA (2018) J Hazard Mater 359:139

    CAS  PubMed  Google Scholar 

  30. Costa ES, Perlatti B, Silva EM, Matos AP, da Silva MFGF, Fernandes JB, Zuin VG, Silva CMP, Forim MR (2017) J Braz Chem Soc 28:126

    CAS  Google Scholar 

  31. Zhou M, Wang D, Yang D, Qiu X (2019) Ind Crops Prod 137:453

    CAS  Google Scholar 

  32. Ihegwuagu NE, Sha’Ato R, Tor-Anyiin TA, Nnamonu LA, Buekes P, Sone B, Maaza M (2016) New J Chem 40:1777

    CAS  Google Scholar 

  33. Grillo R, Pereira AES, Nishisaka CS, de Lima R, Oehlke K, Greiner R, Fraceto LF (2014) J Hazard Mater 278:163

    CAS  PubMed  Google Scholar 

  34. Grillo R, Pereira Ado E, de Melo NFS, Porto RM, Feitosa LO, Tonello PS, Dias Filho NL, Rosa AH, Lima R, Fraceto LF (2011) J Hazard Mater 186:1645

    CAS  PubMed  Google Scholar 

  35. Chung H, Washburn NR (2016) In: Faruk O, Sain M (eds) Lignin in polymer composites. William Andrew Publishing, Norwich, p 13

    Google Scholar 

  36. Vinardell MP, Mitjans M (2017) Int J Mol Sci 18:1219

    PubMed Central  Google Scholar 

  37. Tejado A, Pena C, Labidi J, Echeverria JM, Mondragon I (2007) Bioresour Technol 98:1655

    CAS  PubMed  Google Scholar 

  38. Busatto C, Pesoa J, Helbling I, Luna J, Estenoz D (2018) Int J Pharm 536:360

    CAS  PubMed  Google Scholar 

  39. El Mansouri NE, Salvadó J (2007) Ind Crops Prod 26(2):116–124

    Google Scholar 

  40. Czaplicka M, Barchanska H, Jaworek K, Kaczmarczyk B (2018) J Soil Sediment 18(3):827–834

    CAS  Google Scholar 

  41. IRAM (2008) Norma 29114. Método de ensayo de toxicidad aguda con semillas de lechuga (Lactuca sativa L.) - Método Papel. Calidad ambiental - Métodos Biológicos

  42. US EPA (US Environmental Protection Agency) (1996) Ecological effects test guidelines. Seed germination/root elongation toxicity test OPPTS 850:4200

  43. Ortega MC, Aguado MT, Ordovás J, Moreno MT, Carmona E (2000) Actas de Horticultura 32:363

    Google Scholar 

  44. Zucconi F, Mónaco A, Forte M (1985) In: Gasser JKR (ed) Composting of agricultural and other wastes. Elsevier, Amsterdam, p 73

    Google Scholar 

  45. Bagur-González MG, Estepa-Molina C, Martín-Peinado F, Morales-Ruano S (2011) J Soils Sediments 11:281

    Google Scholar 

  46. Espinoza-Acosta JL, Torres-Chávez PI, Carvajal-Millán E, Ramírez-Wong B, Bello-Pérez LA, Montaño-Leyva B (2014) BioResources 9:3660

    Google Scholar 

  47. Li L, Zhao J, Sun Y, Yu F, Ma J (2019) Chem Eng J 372:1091

    CAS  Google Scholar 

  48. Basak SC, Kumar KS, Ramalingam M (2008) Rev Bras Cienc Farm 44(3):477–483

    CAS  Google Scholar 

  49. Park J, Yoon JH, Depuydt S, Oh JW, Jo YM, Kim K, Brown MT, Han T (2016) Ecotoxicol Environ Saf 126:147

    CAS  PubMed  Google Scholar 

  50. Houle D, Govindaraju DR, Omholt S (2010) Nat Rev Genet 11:855

    CAS  PubMed  Google Scholar 

  51. Lyu J, Park J, Pandey LK, Choi S, Lee H, De Saeger J, Depuydt S, Han T (2018) Ecotoxicol Environ Saf 149:232

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Litoral (UNL), Universidad Tecnológica Nacional (UTN), and Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) for the financial support. We also thank Eng. C. Romani for her assistance in carrying out part of the experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Alejandra Estenoz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Busatto, C.A., Taverna, M.E., Lescano, M.R. et al. Preparation and Characterization of Lignin Microparticles-in-Alginate Beads for Atrazine Controlled Release. J Polym Environ 27, 2831–2841 (2019). https://doi.org/10.1007/s10924-019-01564-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01564-2

Keywords

Navigation