Skip to main content
Log in

Amino-Modified Halloysite Nanotubes to Reduce Polymer Degradation and Improve the Performance of Mechanically Recycled Poly(lactic acid)

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

From an environmental point of view, mechanical recycling is, in general, a good end-of-life option for poly(lactic acid) (PLA), one of the most important biobased polymers. However, the degradation of PLA during the service life and, especially, during the mechanical recycling process, leads to a decrease in the properties of PLA, thus reducing the applications of the recycled plastic. The main aim of this work was to study the addition of small amounts of halloysite nanotubes, during the recycling step, as the basis of a cost-effective method for improving the properties of the recycled PLA. Raw halloysite was modified with an aminosilane, and 2% by weight of both raw and modified halloysite were melt compounded with PLA previously subjected to accelerated ageing. The addition of the nanotubes led to recycled materials with improved properties because halloysite reduces the degradation of PLA by blocking the carboxyl groups, generated during the ageing and washing steps, which catalyze the degradation during the recycling process. This effect was more intense in the silanized nanotubes, because the carboxyl groups were effectively blocked by acid–base interactions with the amino groups of the chemical modification. The properties of the recycled plastic with only 2 wt% of silanized halloysite were very close to those of the virgin plastic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Auras R, Lim L, Selke SEM, Tsuji H (2010) Poly(lactic acid): synthesis, structures, properties, processing, and applications. Wiley, New York

    Book  Google Scholar 

  2. Raquez J, Habibi Y, Murariu M, Dubois P (2013) Prog Polym Sci 38:1504

    Article  CAS  Google Scholar 

  3. Reddy MM, Vivekanandhan S, Misra M, Bhatia SK, Mohanty AK (2013) Prog Polym Sci 38:1653

    Article  CAS  Google Scholar 

  4. Niaounakis M (2013) Biopolymers reuse, recycling, and disposal. William Andrew Publishing, Oxford

    Google Scholar 

  5. Aeschelmann F, Carus M (2017) Biobased building blocks and polymers: global capacities and trends 2016–2021. Nova-Institüt, Hürth

    Google Scholar 

  6. Mülhaupt R (2013) Macromol Chem Phys 214:159

    Article  CAS  Google Scholar 

  7. Leejarkpai T, Mungcharoen T, Suwanmanee U (2016) J Clean Prod 125:95

    Article  CAS  Google Scholar 

  8. Tuna B, Ozkoc G (2017) J Polym Environ 25:983

    Article  CAS  Google Scholar 

  9. Farah S, Anderson DG, Langer R (2016) Adv Drug Deliv Rev 107:367

    Article  CAS  PubMed  Google Scholar 

  10. Iñiguez-Franco F, Auras R, Dolan K, Selke S, Holmes D, Rubino M, Soto-Valdez H (2018) Polym Degrad Stab 149:28

    Article  CAS  Google Scholar 

  11. Cosate de Andrade MF, Souza PMS, Cavalett O, Morales AR (2016) J Polym Environ 24:372

    Article  CAS  Google Scholar 

  12. Ragaert K, Delva L, Van Geem K (2017) Waste Manag 69:24

    Article  CAS  PubMed  Google Scholar 

  13. Piemonte V (2011) J Polym Environ 19:988

    Article  CAS  Google Scholar 

  14. Rossi V, Cleeve-Edwards N, Lundquist L, Schenker U, Dubois C, Humbert S, Jolliet O (2015) J Clean Prod 86:132

    Article  Google Scholar 

  15. Cornell DD (2007) J Polym Environ 15:295

    Article  CAS  Google Scholar 

  16. Beltrán FR, Lorenzo V, Acosta J, de la Orden MU, Urreaga JM (2018) J Environ Manag 216:25

    Article  CAS  Google Scholar 

  17. Badia JD, Strömberg E, Karlsson S, Ribes-Greus A (2012) Polym Degrad Stab 97:670

    Article  CAS  Google Scholar 

  18. Brüster B, Addiego F, Hassouna F, Ruch D, Raquez J, Dubois P (2016) Polym Degrad Stab 131:132

    Article  CAS  Google Scholar 

  19. Badia JD, Ribes-Greus A (2016) Eur Polym J 84:22

    Article  CAS  Google Scholar 

  20. Liu M, Jia Z, Jia D, Zhou C (2014) Prog Polym Sci 39:1498

    Article  CAS  Google Scholar 

  21. Gorrasi G, Pantani R, Murariu M, Dubois P (2014) ‎Macromol Mater Eng 299:104

    Article  CAS  Google Scholar 

  22. Krishnaiah P, Ratnam CT, Manickam S (2017) Appl Clay Sci 135:583

    Article  CAS  Google Scholar 

  23. Cuadri AA, Martín-Alfonso JE (2018) Polym Degrad Stab 150:37

    Article  CAS  Google Scholar 

  24. Södergård A, Stolt M (2002) Prog Polym Sci 27:1123

    Article  Google Scholar 

  25. Stloukal P, Kalendova A, Mattausch H, Laske S, Holzer C, Koutny M (2015) Polym Test 41:124

    Article  CAS  Google Scholar 

  26. Jamshidi K, Hyon S, Ikada Y (1988) Polymer 29:2229

    Article  CAS  Google Scholar 

  27. Porfyris A, Vasilakos S, Zotiadis C, Papaspyrides C, Moser K, Van der Schueren L, Buyle G, Pavlidou S, Vouyiouka S (2018) Polym Test 68:315

    Article  CAS  Google Scholar 

  28. Nishida H (2010) Thermal degradation. In: Auras R, Lim L, Selke SEM, Tsuji H (eds) Poly(lactic acid): synthesis, structures, properties, processing, and applications. Wiley, New York, p 401

    Chapter  Google Scholar 

  29. Yang L, Chen X, Jing X (2008) Polym Degrad Stab 93:1923

    Article  CAS  Google Scholar 

  30. Najafi N, Heuzey MC, Carreau PJ, Wood-Adams PM (2012) Polym Degrad Stab 97:554

    Article  CAS  Google Scholar 

  31. Beltrán FR, de la Orden MU, Lorenzo V, Urreaga JM (2017) Rev Plast Mod 720:19

    Google Scholar 

  32. Chariyachotilert C, Joshi S, Selke SEM, Auras R (2012) J Plast Film Sheeting 28:314

    Article  CAS  Google Scholar 

  33. Yuan P, Southon PD, Liu Z, Green MER, Hook JM, Antill SJ, Kepert CJ (2008) J Phys Chem C 112:15742

    Article  CAS  Google Scholar 

  34. Barrientos-Ramírez S, Oca-Ramírez GMD, Ramos-Fernández EV, Sepúlveda-Escribano A, Pastor-Blas MM, González-Montiel A (2011) Appl Catal A 406:22

    Article  CAS  Google Scholar 

  35. de la Orden MU, Arranz J, Lorenzo V, Pérez E, Urreaga JM (2010) J Colloid Interface Sci 342:185

    Article  CAS  PubMed  Google Scholar 

  36. Larena A, Matías MC, Urreaga JM (1992) ‎Spectrosc Lett 25:1121

    Article  CAS  Google Scholar 

  37. Therias S, Murariu M, Dubois P (2017) Polym Degrad Stab 145:60

    Article  CAS  Google Scholar 

  38. Murariu M, Dechief A, Paint Y, Peeterbroeck S, Bonnaud L, Dubois P (2012) J Polym Environ 20:932

    Article  CAS  Google Scholar 

  39. Beltrán FR, Lorenzo V, de la Orden MU, Urreaga JM (2016) Polym Degrad Stab 133:339

    Article  CAS  Google Scholar 

  40. Carrasco F, Gámez-Pérez J, Santana OO, Maspoch ML (2011) Chem Eng J 178:451

    Article  CAS  Google Scholar 

  41. Beltrán FR, Ortega E, Solvoll AM, Lorenzo V, de la Orden MU, Urreaga JM (2018) J Polym Environ 26:2142

    Article  CAS  Google Scholar 

  42. Zhao Y, Abdullayev E, Vasiliev A, Lvov Y (2013) J Colloid Interface Sci 406:121

    Article  CAS  PubMed  Google Scholar 

  43. Di Lorenzo ML (2006) J Appl Polym Sci 100:3145

    Article  CAS  Google Scholar 

  44. Liu M, Zhang Y, Zhou C (2013) Appl Clay Sci 75–76:52

    Article  CAS  Google Scholar 

  45. Fukushima K, Fina A, Geobaldo F, Venturello A, Camino G (2012) Express Polym Lett 6:859

    Article  CAS  Google Scholar 

  46. Cele HM, Ojijo V, Chen H, Kumar S, Land K, Joubert T, de Villiers MFR, Ray SS (2014) Polym Test 36:24

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Centro Nacional de Microscopía Electrónica of the Universidad Complutense de Madrid (Spain), for the collaboration in the TEM measurements. This work was supported by MINECO-Spain (Grant Number CTM2017-88989-P) and Universidad Politécnica de Madrid (project UPM RP 160543006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. R. Beltrán.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beltrán, F.R., de la Orden, M.U. & Martínez Urreaga, J. Amino-Modified Halloysite Nanotubes to Reduce Polymer Degradation and Improve the Performance of Mechanically Recycled Poly(lactic acid). J Polym Environ 26, 4046–4055 (2018). https://doi.org/10.1007/s10924-018-1276-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-018-1276-6

Keywords

Navigation