Skip to main content

Advertisement

Log in

Biological Recycling of Polyethylene Terephthalate: A Mini-Review

  • Review
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Plastics have become an inseparable part of our life in the society due to their merits such as low cost, light weight, good mechanical and thermal properties along with easy process ability. Since the last few decades, the unrestrained use of plastics in various fields like agriculture, packaging, transportation has raised a serious issue about its disposal and pollution. An efficient decomposition of plastics takes about 1000 years. Not only there is an increase in the problem of waste disposal of plastics but also they release CO2 and dioxins on burning which contributes to cause pollution. There is a growing concern for use of efficient microorganisms meant for biodegradation of non-degradable synthetic polymer because conventionally used methods for plastic disposal are ineffective for plastic waste management. This review paper focuses on one such type of plastic-polyethylene terephthalate (PET) which is widely used in a flexible packaging application, its manufacturing process and the various effects of waste generated by it on the surrounding environment. This review discusses an overview of various existing plastic disposal methods along with their limitations and mechanism of biodegradation of PET and factors affecting biodegradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Europe P (2015) Plastics—the facts 2015 an analysis of European plastics production, demand and waste data. http://www.plasticseurope.org/download_file/view/479/179

  2. Asmita K, Shubhamsingh T, Tejashree S et al (2015) Isolation of plastic degrading micro-organisms from soil samples collected at various locations in Mumbai, India. Int Res J Environ Sci 4:77–85

    CAS  Google Scholar 

  3. Harrison JP, Schratzberger M, Sapp M, Osborn AM (2014) Rapid bacterial colonization of low-density polyethylene microplastics in coastal sediment microcosms. BMC Microbiol 14:1–15. https://doi.org/10.1186/s12866-014-0232-4

    Article  CAS  Google Scholar 

  4. Harper CA (1999) Modern plastics handbook, 1st edn. McGraw-Hill, New York

    Google Scholar 

  5. Al-sabagh AM, Yehia FZ, Eshaq G et al (2016) Greener routes for recycling of polyethylene terephthalate. Egypt J Pet 25:53–64. https://doi.org/10.1016/j.ejpe.2015.03.001

    Article  Google Scholar 

  6. Driedger AGJ, Dürr HH, Mitchell K, Cappellen P, Van (2015) Plastic debris in the Laurentian Great Lakes: a review. J Great Lakes Res 41:9–19. https://doi.org/10.1016/j.jglr.2014.12.020

    Article  CAS  Google Scholar 

  7. Tokiwa Y, Calabia BP, Ugwu CU, Aiba S (2009) Biodegradability of plastics bio-plastics. Int J Mol Sci 10:3722–3742. https://doi.org/10.3390/ijms10093722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sepperumal U, Markandan M, Palraja I (2013) Micromorphological and chemical changes during biodegradation of polyethylene terephthalate (PET) by Penicillium sp. J Microbiol Biotechnol Res 3:47–53

    Google Scholar 

  9. Webb HK, Arnott J, Crawford RJ, Ivanova EP (2013) Plastic degradation and its environmental implications with special reference to poly(ethylene terephthalate). Polymers (Basel) 5:1–18. https://doi.org/10.3390/polym5010001

    Article  CAS  Google Scholar 

  10. (2015) India Polyethylene Terephthalate(PET) Resin Market (2011–2016). https://www.marketresearch.com/product/sample-7147622.pdf

  11. Kondratowicz F, Ukielski R (2009) Synthesis and hydrolytic degradation of poly (ethylene succinate) and poly (ethylene terephthalate) copolymers. Polym Degrad Stab 94:375–382. https://doi.org/10.1016/j.polymdegradstab.2008.12.001

    Article  CAS  Google Scholar 

  12. Rwei S, Lin W, Wang J (2012) Synthesis and characterization of biodegradable and weather-durable PET / PEG / NDC copolymers. Colloid Polym Sci 290:1381–1392. https://doi.org/10.1007/s00396-012-2662-6

    Article  CAS  Google Scholar 

  13. Fink JK (2010) Handbook of engineering and speciality thermoplastics. Hoboken, Wiley. https://doi.org/10.1002/9780470881712

  14. Radian Corp., Mc Lean V (1985) Industrial process profiles for environmental use. Chapter 10. The plastics and resins production industry. Environmental Protection Agency, Mc Lean

  15. Meyer T, Eds JK (2006) In Fakirov S (ed) Handbook of condensation thermoplastic elastomer. Wiley, New York. https://doi.org/10.1002/3527606610

  16. Brydson JA (1999) Plastics materials, 7th edn. Elsevier, Amsterdam

    Google Scholar 

  17. Thompson RC, Moore CJ, Saal FS et al (2009) Plastics, the environment and human health: current consensus and future trends. Philos Trans R Soc B. https://doi.org/10.1098/rstb.2009.0053

    Article  Google Scholar 

  18. Kakkar P, Shaw A (2010) Envis newsletter. Indian Institute of Toxicology Research Lucknow, India

    Google Scholar 

  19. Avio CG, Gorbi S, Regoli F (2016) Plastics and microplastics in the oceans: from emerging pollutants to emerged threat. Mar Environ Res. https://doi.org/10.1016/j.marenvres.2016.05.012

    Article  PubMed  Google Scholar 

  20. Khoo HH, Tan RBH (2010) Environmental impacts of conventional plastic and bio-based carrier bags. Int J Life Cycle Assess 15:338–345. https://doi.org/10.1007/s11367-010-0163-8

    Article  CAS  Google Scholar 

  21. Krueger MC, Harms H, Schlosser D (2015) Prospects for microbiological solutions to environmental pollution with plastics. Appl Microbiol Biotechnol 99:8857–8874. https://doi.org/10.1007/s00253-015-6879-4

    Article  CAS  PubMed  Google Scholar 

  22. Mato Y, Isobe T, Takada H et al (2001) Plastic resin pellets as a transport medium for toxic chemicals in the marine environment. Environ Sci Technol 35:318–324

    Article  CAS  PubMed  Google Scholar 

  23. North EJ, Halden RU (2013) Plastics and environmental health: the road ahead. Rev Environ Health 28:1–8. https://doi.org/10.1515/reveh-2012-0030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sciences H, Zealand N (2002) The pollution of the marine environment by plastic debris: a review. Mar Pollut Bull 44:842–852. https://doi.org/10.1016/S0025-326X(02)00220-5

    Article  Google Scholar 

  25. Qasaimeh A, Q MRA, Hani FB (2016) A review on biogas interception processes in municipal landfill. J Environ Sci Technol 9:1–25. https://doi.org/10.3923/jest.2016.1.25

    Article  Google Scholar 

  26. Simon B, Amor MB, Foldenyi R (2015) Life cycle impact assessment of beverage packaging systems: focus on the collection of post-consumer bottles. J Clean Prod. https://doi.org/10.1016/j.jclepro.2015.06.008

    Article  Google Scholar 

  27. Cleary J (2014) LCA OF WASTE MANAGEMENT SYSTEMS a life cycle assessment of residential waste management and prevention. Int J Life Cycle Assess. https://doi.org/10.1007/s11367-014-0767-5

    Article  Google Scholar 

  28. Kaminsky W (1991) Recycling of polymeric materials by pyrolysis. Microsymp Degrad Recycl Polym Mater 48:381–393. https://doi.org/10.1002/masy.19910480127

    Article  Google Scholar 

  29. Wilkie C, Mckinney MA (2004) Thermal properties of thermoplastics. In Troitzsch J Plastics flammability handbook. Principles, regulations, testing, and approval. Hanser, Munich, pp. 58–76. https://epublications.marquette.edu/cgi/viewcontent.cgi?article=1039&context=chem_fac

  30. Gug J, Cacciola D, Sobkowicz MJ (2014) Processing and properties of a solid energy fuel from municipal solid waste (MSW) and recycled plastics. Waste Manag. https://doi.org/10.1016/j.wasman.2014.09.031

    Article  PubMed  Google Scholar 

  31. Dayana S, Sharuddin A, Abnisa F et al (2016) A review on pyrolysis of plastic wastes. Energy Convers Manag 115:308–326. https://doi.org/10.1016/j.enconman.2016.02.037

    Article  CAS  Google Scholar 

  32. Burnley S, Coleman T, Peirce A (2015) Factors influencing the life cycle burdens of the recovery of energy from residual municipal waste. Waste Manag. https://doi.org/10.1016/j.wasman.2015.02.022

    Article  PubMed  Google Scholar 

  33. Astrup T, Møller J, Fruergaard T (2009) Incineration and co-combustion of waste: accounting of greenhouse gases and global warming contributions. Waste Manag Res 27:789–799. https://doi.org/10.1177/0734242X09343774

    Article  CAS  PubMed  Google Scholar 

  34. Levchik SV, Weil ED (2004) A review on thermal decomposition and combustion of thermoplastic polyesters. Polym Adv Technol 15:691–700. https://doi.org/10.1002/pat.526

    Article  CAS  Google Scholar 

  35. Vijayakumar CT, Ponnusamy E, Balakrishnan T, Kothandaraman H (1982) Thermal and pyrolysis studies of copolyesters. J Polym Sci A 20:2715–2725. https://doi.org/10.1002/pol.1982.170200929

    Article  CAS  Google Scholar 

  36. Francis R (2016) Recycling of polymers-methods, characterization and applications. Wiley, New York

    Book  Google Scholar 

  37. Karayannidis GP, Achilias DS (2007) Chemical recycling of poly (ethylene terephthalate). Macromol Mater Eng 292:128–146. https://doi.org/10.1002/mame.200600341

    Article  CAS  Google Scholar 

  38. Miskolczi N, Bartha L, Deák G, Jóver B (2003) Chemical recycling of waste polyethylene and polypropylene. Pet Coal 45:125–130

    CAS  Google Scholar 

  39. El Mejjatti A, Harit T, Riahi A et al (2014) Chemical recycling of poly (ethylene terephthalate). Application to the synthesis of multiblock copolyesters. eXPRESS Polym Lett 8:544–553. https://doi.org/10.3144/expresspolymlett.2014.58

    Article  Google Scholar 

  40. Grove M, Magidson H (1992) United States Patent

  41. George E. Brown J (1976) United States Patent

  42. Tustin GC (1995) United States Patent

  43. For P, Formation M, Low OF et al (1986) United States Patent

  44. Reynolds FU (1982) United States Patent

  45. Blackmon KP (1990) United States Patent

  46. Hiroshi I, Fujioka K (2004) United States Patent

  47. Sinha V, Patel MR, Patel JV (2010) pet waste management by chemical recycling: a review. J Polym Environ 18:8–25. https://doi.org/10.1007/s10924-008-0106-7

    Article  CAS  Google Scholar 

  48. Venkatachalam S, Nayak SG, Labde JV et al (2012) Degradation and recyclability of poly (ethylene terephthalate). Polyester. https://doi.org/10.5772/48612

    Article  Google Scholar 

  49. Jain A, Soni RK (2007) Spectroscopic investigation of end products obtained by ammonolysis of poly (ethylene terephthalate) waste in the presence of zinc acetate as a catalyst. J Polym Res 14:475–481. https://doi.org/10.1007/s10965-007-9131-9

    Article  CAS  Google Scholar 

  50. Nakkabi A, Elmoualij N, Sadiki M et al (2015) Biodegradation of poly (ethylene terephthalate) by Bacillus subtilis. Int J Recent Adv Multidiscip Res 2:1060–1062

    Google Scholar 

  51. Gross RA, Kalra B (2002) Biodegradable polymers for the environment. Science 297:803–807. https://doi.org/10.1126/science.297.5582.803

    Article  CAS  PubMed  Google Scholar 

  52. Bhardwaj H, Gupta R, Tiwari A (2012) Microbial population associated with plastic degradation. Open Access Sci Rep 1:10–13. https://doi.org/10.4172/scientificreports.272

    Article  Google Scholar 

  53. Cerda M, Kint D, Munoz-Guerra S, Marques-Calvo M (2004) Biodegradability of aromatic building blocks for poly (ethylene terephthalate) copolyesters. Polym Degrad Stab 85:865–871. https://doi.org/10.1016/j.polymdegradstab.2004.04.001

    Article  CAS  Google Scholar 

  54. Cerda M, Kint D, Munoz-Guerra S et al (2006) Enzymatic and microbial biodegradability of poly (ethylene terephthalate) copolymers containing nitrated units. Polym Degrad Stab 91:663–671. https://doi.org/10.1016/j.polymdegradstab.2005.05.014

    Article  CAS  Google Scholar 

  55. Kale SK, Deshmukh AG, Dudhare MS, Patil VB (2015) Microbial degradation of plastic: a review. J Biochem Tech 6:952–961

    CAS  Google Scholar 

  56. Mohan SK, Srivastava T (2011) Microbial deterioration and degradation of polymeric materials. J Biochem Tech 2:210–215

    Google Scholar 

  57. Mueller R (2006) Biological degradation of synthetic polyesters—Enzymes as potential catalysts for polyester recycling. Process Biochem 41:2124–2128. https://doi.org/10.1016/j.procbio.2006.05.018

    Article  CAS  Google Scholar 

  58. Mu R, Kleeberg I, Deckwer W (2001) Biodegradation of polyesters containing aromatic constituents. J Biotechnol 86:87–95. https://doi.org/10.1016/S0168-1656(00)00407-7

    Article  Google Scholar 

  59. Sharon C, Sharon M (2012) Studies on biodegradation of polyethylene terephthalate: a synthetic polymer. J Microbiol Biotechnol Res 2:248–257

    CAS  Google Scholar 

  60. Selke S, Auras R, Nguyen TA et al (2015) Evaluation of biodegradation-promoting additives for plastics. Environ Sci Technol 54:A-I. https://doi.org/10.1021/es504258u

    Article  CAS  Google Scholar 

  61. Hermanova S, Smejkalov P, Merna J, Zarevucka M (2015) Biodegradation of waste PET based copolyesters in thermophilic anaerobic sludge. Polym Degrad Stab 111:176–184. https://doi.org/10.1016/j.polymdegradstab.2014.11.007

    Article  CAS  Google Scholar 

  62. Mergaert J, Swings J (1996) Biodiversity of microorganisms that degrade bacterial and synthetic polyesters. J Ind Microbiol 17:463–469. https://doi.org/10.1007/BF01574777

    Article  CAS  Google Scholar 

  63. Tokiwa Y, Calabia BP (2004) Degradation of microbial polyesters. Biotechnol Lett 26:1181–1189. https://doi.org/10.1023/B:BILE.0000036599.15302.e5

    Article  CAS  PubMed  Google Scholar 

  64. Weiner S, Dove PM (2003) An overview of biomineralization processes and the problem of the vital effect. Rev Miner Geochem 54:1–29. https://doi.org/10.2113/0540001

    Article  CAS  Google Scholar 

  65. Li X, Lan J, Ai M et al (2014) Biomineralization on polymer-coated multi-walled carbon nanotubes with different surface functional groups. Colloids Surf B 26:1–9. https://doi.org/10.1016/j.colsurfb.2014.10.026

    Article  CAS  Google Scholar 

  66. Arutchelvi J, Sudhakar M, Arkatkar A et al (2008) Biodegradation of polyethylene and polypropylene. Indian J Biotechnol 7:9–22

    CAS  Google Scholar 

  67. Raaman N, Rajitha N, Jayshree A, Jegadeesh R (2012) Biodegradation of plastic by Aspergillus spp. isolated from polythene polluted sites around Chennai. J Acad Ind Res 1:313–316

    CAS  Google Scholar 

  68. Albertsson A, Karlsson S (1990) The influence of biotic and abiotic environments on the degradation of polyethylene. Prog Polym Sci 15:177–192

    Article  CAS  Google Scholar 

  69. Ma M, Wang L, Zhu H (2012) Enzymatic degradation of polyester-nanoparticles by lipases and adsorption of lipases on the polyester-nanoparticles. Adv Mater Res 420:2302–2307. https://doi.org/10.4028/www.scientific.net/AMR.418-420.2302

    Article  CAS  Google Scholar 

  70. Acero EH, Ribitsch D, Dellacher A et al (2013) Surface engineering of a cutinase from thermobifida cellulosilytica for improved polyester hydrolysis. Biotechnol Bioeng 110:2581–2590. https://doi.org/10.1002/bit.24930

    Article  CAS  Google Scholar 

  71. Ronkvist M, Xie W, Lu W, Gross RA (2009) Cutinase-catalyzed hydrolysis of poly (ethylene terephthalate). Macromolecules 42:5128–5138. https://doi.org/10.1021/ma9005318

    Article  CAS  Google Scholar 

  72. Ribitsch D, Heumann S, Trotscha E et al (2011) Hydrolysis of polyethyleneterephthalate by p-nitrobenzylesterase from Bacillus subtilis. Am Inst Chem Eng 27:951–960. https://doi.org/10.1002/btpr.610

    Article  CAS  Google Scholar 

  73. Muller RJ, Schrader H, Profe J et al (2005) Enzymatic degradation of poly (ethylene terephthalate): rapid hydrolyse using a hydrolase from T. fusca. Macromol Rapid Commun 26:1400–1405. https://doi.org/10.1002/marc.200500410

    Article  CAS  Google Scholar 

  74. Kawai F, Oda M, Tamashiro T et al (2014) A novel Ca2+ -activated, thermostabilized polyesterase capable of hydrolyzing polyethylene terephthalate from Saccharomonospora viridis AHK190. Appl Microbiol Biotechnol 93:1–12. https://doi.org/10.1007/s00253-014-5860-y

    Article  CAS  Google Scholar 

  75. Mensak B, Andreaus J, Zimmermann W et al (2004) Biocatalytic modification of polyethylene terephthalate fibres by esterases from actinomycete isolates. Biocatal Biotransform 22:347–351. https://doi.org/10.1080/10242420400025877

    Article  CAS  Google Scholar 

  76. Billig S, Oeser T, Birkemeyer C, Zimmermann W (2010) Hydrolysis of cyclic poly (ethylene terephthalate) trimers by a carboxylesterase from Thermobifida fusca KW3. Appl Microbiol Biotechnol 87:1753–1764. https://doi.org/10.1007/s00253-010-2635-y

    Article  CAS  PubMed  Google Scholar 

  77. Ribitsch D, Acero EH, Greimel K et al (2012) A new esterase from Thermobifida halotolerans hydrolyses polyethylene terephthalate (PET) and polylactic acid (PLA). Polymers (Basel) 4:617–629. https://doi.org/10.3390/polym4010617

    Article  CAS  Google Scholar 

  78. Wang X, Lu D, Jönsson LJ, Hong F (2008) Preparation of a PET-hydrolyzing lipase from Aspergillus oryzae by the addition of bis (2-hydroxyethyl) terephthalate to the culture medium and enzymatic modification of PET fabrics. Eng Life Sc 8:268–276. https://doi.org/10.1002/elsc.200700058

    Article  CAS  Google Scholar 

  79. El-ola SMA, Moharam ME, El-bendary MA (2013) Optimum conditions for surface modification of PET by lipase enzymes produced by Egyptian bacilli in comparison with standard one. Indian J Fibre Text Res 38:165–172.

    Google Scholar 

  80. Wei R, Oeser T, Then J et al (2014) Functional characterization and structural modeling of synthetic polyester-degrading hydrolases from Thermomonospora curvata. AMB express 11:1–10. https://doi.org/10.1186/s13568-014-0044-9

    Article  CAS  Google Scholar 

  81. Ali A, Eguchi T, Mayumi D et al (2013) Puri fi cation and properties of novel aliphatic-aromatic co-polyesters degrading enzymes from newly isolated Roseateles depolymerans strain TB-87. Polym Degrad Stab 98:609–618. https://doi.org/10.1016/j.polymdegradstab.2012.11.013

    Article  CAS  Google Scholar 

  82. Shao H, Xu L, Yan Y (2013) Isolation and characterization of a thermostable esterase from a metagenomic library. J Ind Microbiol Biotechnol 40:1211–1222. https://doi.org/10.1007/s10295-013-1317-z

    Article  CAS  PubMed  Google Scholar 

  83. Perz V, Bleymaier K, Sinkel C et al (2015) Substrate specificities of cutinases on aliphatic—aromatic polyesters and on their model substrates. New Biotechnol 0:1–10. https://doi.org/10.1016/j.nbt.2015.11.004

    Article  CAS  Google Scholar 

  84. Taylor P, Gupta D, Chaudhary H (2015) Topographical changes in polyester after chemical, physical and enzymatic hydrolysis. J Text Inst 106:690–698. https://doi.org/10.1080/00405000.2014.934046

    Article  CAS  Google Scholar 

  85. Nimchua T, Eveleigh DE, Punnapayak H (2008) Screening of tropical fungi producing polyethylene terephthalate-hydrolyzing enzyme for fabric modi W cation. J Ind Microbiol Biotechnol 35:843–850. https://doi.org/10.1007/s10295-008-0356-3

    Article  CAS  PubMed  Google Scholar 

  86. Kitadokoro K, Thumarat U, Nakamura R et al (2012) Crystal structure of cutinase Est119 from Thermobifida alba AHK119 that can degrade modified polyethylene terephthalate at 1.76 Å resolution. Polym Degrad Stab 97:771–775. https://doi.org/10.1016/j.polymdegradstab.2012.02.003

    Article  CAS  Google Scholar 

  87. Acero EH, Ribitsch D, Steinkellner G et al (2011) Enzymatic surface hydrolysis of PET: effect of structural diversity on kinetic properties of cutinases from Thermobifida. Macromolecules 44:4632–4640. https://doi.org/10.1021/ma200949p

    Article  CAS  Google Scholar 

  88. Espino-rammer L, Ribitsch D, Przylucka A et al (2013) Two novel class II hydrophobins from Trichoderma spp. stimulate enzymatic hydrolysis of poly (ethylene terephthalate) when expressed as fusion proteins. Appl Environ Microbiol 79:4230–4238. https://doi.org/10.1128/AEM.01132-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ribitsch D, Acero H, Przylucka A et al (2015) Enhanced cutinase-catalyzed hydrolysis of polyethylene terephthalate by covalent fusion to hydrophobins. Am Soc Microbiol 81:3586–3592. https://doi.org/10.1128/AEM.04111-14

    Article  CAS  Google Scholar 

  90. Roth C, Wei R, Oeser T et al (2014) Structural and functional studies on a thermostable polyethylene terephthalate degrading hydrolase from Thermobifida fusca. Appl Microbiol Biotechnol 66:7815–7823. https://doi.org/10.1007/s00253-014-5672-0

    Article  CAS  Google Scholar 

  91. Yoshida S, Hiraga K, Takehana T et al (2016) A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351:1196–1199. https://doi.org/10.1126/science.aad6359

    Article  CAS  PubMed  Google Scholar 

  92. Yosida (2016) Discovery of a bacterium that degrades and assimilates poly (ethylene terephthalate) could serve as a degradation and/or fermentation platform for biological recycling of PET waste products. Science 351:1196–1199

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupali Koshti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koshti, R., Mehta, L. & Samarth, N. Biological Recycling of Polyethylene Terephthalate: A Mini-Review. J Polym Environ 26, 3520–3529 (2018). https://doi.org/10.1007/s10924-018-1214-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-018-1214-7

Keywords