Skip to main content
Log in

Environmentally Friendly Polylactic Acid/Modified Lignosulfonate Biocomposites

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Ammonium lignosulfonate was modified with carboxylic acids (lactic, oleic) and butyrolactone by physical non-polluting radio frequency cold plasma method. Modified lignosulfonates/polylactic acid (PLA)-based biocomposites with enhanced dielectric and thermal properties have been prepared by melt mixing technique. Some modified lignosulfonates improved processability and rheological properties of PLA. A homogeneous dispersion of lignosulfonates in PLA matrix assures the improvement of hydrophilicity, dielectric, rheological properties and thermal performance of the PLA polymer as they act as nucleating agents increasing crystallinity degree. The dielectric characteristics followed in a large frequency and temperature range. Relaxation transitions and their activation energies were found to be dependent on modified lignosulfonate type incorporated in biocomposites. As PLA is recognized by its biodegradability and the composites containing modified lignosulfonates disintegrate by bio- and environmental degradation even they are incorporated in much resistant matrices as polyolefins, it can supposed that such biocomposites could be considered as medium term degradable ones. Increasing modified lignosulfonates content environmental disintegration period could be shorten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Canetti M, Bertini F (2007) Compos Sci Technol 67:3151

    Article  CAS  Google Scholar 

  2. Domenek S, Louaifi A, Guinault A, Baumberger S (2013) J Polym Environ 21:692

    Article  CAS  Google Scholar 

  3. Bertini F, Canetti M, Cacciamani A, Elegir G, Orlandi M, Zoia L (2012) Polym Degrad Stab 97:1979

    Article  CAS  Google Scholar 

  4. Graupner N (2008) J Mater Sci 43:5222

    Article  CAS  Google Scholar 

  5. Vasile C, Cazacu G (2013) Bio-composites and nanocomposites containing lignin. In: Dufresne A, Thomas S, Pothen LA (eds) Chapter 23 in Biopolymer nanocomposites: processing, properties, and applications. Wiley, Hoboken, pp 565–598. doi:10.1002/9781118609958.ch23

    Chapter  Google Scholar 

  6. Lignosulfonates (calcium lignosulfonate, sodium lignosulfonate, and magnesium lignosulfonate) market for oil well additives, concrete admixture, animal feed binder, dust control and other applications—global industry analysis, size, share, growth, trend. http://www.reportlinker.com/p03431580-summary/view-report.html

  7. Zhang J, Chen G, Yang N-W, Wang Y-G (2014) Pet Sci Technol 32:1661

    Article  CAS  Google Scholar 

  8. Lemes AP, Soto-Oviedo MA, Mei LHI, Durán N (2005) Anais do 8o Congresso Brasileiro de Polímeros 1391. https://www.ipen.br/biblioteca/cd/cbpol/2005/PDF/1059.pdf

  9. Agafitei GE, Pascu MC, Cazacu G, Popa N, Hogea R, Vasile C (1999) Angew Makromol Chem 267:44

    Article  CAS  Google Scholar 

  10. He Z-W, Lü Q-F, Lin Q (2012) Intern J Biol Macromol 51:946

    Article  CAS  Google Scholar 

  11. Lü Q, Wang C, Cheng X (2010) Microchim Acta 16:233

    Article  Google Scholar 

  12. Cazacu G, Mihaies M, Pascu MC, Profire L, Kowarski AI, Vasile C (2004) Macromol Mater Eng Sci 289:880

    Article  CAS  Google Scholar 

  13. Cazacu G, Pascu MC, Profire L, Kowarski AI, Vasile C (2004) Ind Crops Prod 20(204):205

    Google Scholar 

  14. Yang XP, Zhang C, Zhou Y, Xu J, Yang WB (2012) Adv Mater Res 557–559:398–400

    Google Scholar 

  15. Su L, Fang G (2014) Bioresources 9:4477

    Article  Google Scholar 

  16. Zhou J, Luo X, Lin X (2007) Mater Sci Forum 544–545:463. http://www.scientific.net

  17. Macoveanu MM, Constantin L, Manoliu Al, Pascu MC, Profire L, Cazacu G, Vasile C (2001) Cellul Chem Technol 35:197

    CAS  Google Scholar 

  18. Macoveanu MM, Georgescu-Buruntea N, Pascu MC, Casariu M, Ioanid A, Vidrascu P, Vasile C (2001) Cellul Chem Technol 35:263

    CAS  Google Scholar 

  19. Macoveanu MM, Profire L, Pascu M, Vidrascu P, Mindreci I, Agafitei G, Cazacu G, Vasile C (1998) Bull Bot Gard Iaşi 6:351

    Google Scholar 

  20. Macoveanu MM, Vidrascu P, Pascu M, Profire L, Cazacu G, Mindreci I, Darie H, Vasile C (1998) Bull Bot Gard Iaşi 6:453

    Google Scholar 

  21. Pascu M, Macoveanu MM, Vidrascu P, Mindreci I, Ionescu A, Vasile C (1998) Bull Bot Gard Iaşi 6:459

    Google Scholar 

  22. Ouyang W, Huang Y, Luo H, Wang D (2012) J Polym Environ 20:1

    Article  CAS  Google Scholar 

  23. http://www.natureworksllc.com/The-Ingeo-Journey/End-of-Life-Options/Composting

  24. Guan X (2012) Fabrication of poly-lactic acid (PLA) composite films and their degradation properties. The University of Toledo. http://utdr.utoledo.edu/cgi/viewcontent.cgi?article=1345&context=theses-dissertations

  25. Nakagawa T, Nakiri T, Hosoya R, Tajitsu Y (2004) IEEE Trans Ind Appl 40:1020. doi:10.1109/TIA.2004.830751

    Article  CAS  Google Scholar 

  26. Nakiri T et al (2007) IEEE Trans Ind Appl 43:1069

    Article  CAS  Google Scholar 

  27. Nakatsuka T (2011) Polylactic acid-coated cable. Fujikura Techn Rev 39

  28. Meriakri VV, Kalenov DS, Parkhomenko MP, Zhou S, Fedoseev NA (2012) Am J Mater Sci 2(6):171. doi:10.5923/j.materials.20120206.02

    Article  Google Scholar 

  29. Kumar V, Kumar Sharma N, Kumar R (2013) J Reinf Plast Compos 32:42. doi:10.1177/0731684412461290

    Article  Google Scholar 

  30. Pluta M, Jeszka JK, Boiteux G (2007) Eur Polym J 43:2819

    Article  CAS  Google Scholar 

  31. Shinyama K, Oi T, Fujita S (2012) Intern J Polym Sci 5 (Article ID 389491). doi:10.1155/2012/389491

  32. Katsuyoshi S, Toru O, Shigetaka F (2011) IEEJ Trans Fundam Mater 131:427

    Article  Google Scholar 

  33. Li JC, He Y, Yoshio I (2003) Polym Int 52:949

    Article  CAS  Google Scholar 

  34. Simionescu CI, Macoveanu MM, Cazacu G, Vasile C, Stoleriu A (1993) Compos Sci Technol 48:317

    Article  CAS  Google Scholar 

  35. Gordobil O, Egüés I, Llano-Ponte R, Labidi J (2014) Polym Degrad Stab 108:330

    Article  CAS  Google Scholar 

  36. Toriz G, Ramos J, Young RA (2004) J Appl Polym Sci 91:1920

    Article  CAS  Google Scholar 

  37. Simionescu CRI, Rusan V, Macoveanu MM, Cazacu G, Lipsa R, Stoleriu A, Ioanid A (1991) Cellul Chem Technol 25:355

    CAS  Google Scholar 

  38. Södergård A, Stolt M. Industrial production of high molecular weight poly(lactic acid). In: Auras R, Lim L-T, Selke SEM, Tsuji H (eds) Poly(lactic acid): synthesis, structures, properties, processing, and applications. doi:10.1002/9780470649848.ch3

  39. Chirila O, Totolin MI, Cazacu G, Dobromir M, Vasile C (2013) Ind Eng Chem Res 52:13264

    Article  CAS  Google Scholar 

  40. Chirila O, Totolin MI, Cazacu G, Ciolacu D, Vasile C (2012) In: Proceeding of the German–Romanian seminar, 2–5 September 2012, Iasi, Romania

  41. Liu H, Hsieh C, Hu T (1994) Polym Bull 32:463

    Article  CAS  Google Scholar 

  42. Owens DK, Wendt RC (1969) J Appl Polym Sci 13:1741

    Article  CAS  Google Scholar 

  43. Kwok DY, Li D, Neumann AW (1994) Langmuir 10:1323

    Article  CAS  Google Scholar 

  44. van Oss CJ (1993) In: Feast WJ, Munro HS, Richards RW (eds) Polymer surfaces and interfaces II. Wiley, New York, pp 270–278

    Google Scholar 

  45. Kim DH, Kang HJ, Song YS (2013) Carbohyd Polym 92:1006

    Article  CAS  Google Scholar 

  46. Li H, Legros N (2013) Ton-that M-tan. In: Rakotovelo A (ed) Plastics engineering 2013. http://www.thefreelibrary.com/PLA-thermoplastic+lignin+blends.-a0343533090

  47. Albinsson B, Li S, Lundquist K, Stomberg R (1999) J Mol Struct 508:19

    Article  CAS  Google Scholar 

  48. Lindberg W, Persson J-A, Wold S (1983) Anal Chem 55:643

    Article  CAS  Google Scholar 

  49. Radotić K, Kalauzi A, Djikanović D, Jeremić M, Leblanc RM, Cerović ZG (2006) J Photochem Photobiol B Biol 83:1

    Article  Google Scholar 

  50. Alonso MV, Oliet M, Rodrıguez F, Garcıa J, Gilarranz MA, Rodrıguez JJ (2005) Bioresour Technol 96:1013

    Article  CAS  Google Scholar 

  51. Tejado A, Peña C, Labidi J, Echeverria JM, Mondragon I (2007) Bioresour Technol 98:1655

    Article  CAS  Google Scholar 

  52. Boeriu CG, Bravo D, Gosselink RJA, van Dam JEG (2004) Ind Crops Prod 20:205

    Article  CAS  Google Scholar 

  53. Snyder RG, Hsut SL, Krimm S (1978) Spectrochim Acta 34A:395

    Article  CAS  Google Scholar 

  54. Meyers RA (ed) (2000) Interpretation of infrared spectra, a practical approach john coates in encyclopedia of analytical chemistry. Wiley, Chichester, pp 10815–10837

    Google Scholar 

  55. Braun D, Eidam N, Leiß D (1991) Makromol Symp 52:105

    Article  CAS  Google Scholar 

  56. Guo L, Sato H, Hashimoto T, Ozaki Y (2010) Macromolecules 43:3897

    Article  CAS  Google Scholar 

  57. Sakaguchi M, Kobayashi S (2015) Adv Compos Mater 24(sup1):91

    Article  Google Scholar 

  58. Bonner M, Saunders LS, Ward IM, Davies GW, Wang M, Tanner KE, Bonfield W (2002) J Mater Sci 37:325

    Article  CAS  Google Scholar 

  59. Kawai T, Rahman N, Matsuba G, Nishida K, Kanaya T, Nakano M, Okamoto H, Kawada J, Usuki A, Honma N, Nakajima K, Matsuda M (2007) Macromolecules 40:9463

    Article  CAS  Google Scholar 

  60. Kawamoto N, Sakai A, Horikoshi T, Urushihara T, Tobita E (2007) J Appl Polym Sci 103:198. doi:10.1002/app.25109

    Article  CAS  Google Scholar 

  61. Wei Z, Song P, Liang J, Chen G, Zhang W. Enhanced crystallization of polylactide by adding a multiamide compound. http://www.4spepro.org/pdf/003995/003995.pdf

  62. Guo T, Wang B (2014) Polym Plast Technol Eng 53:917–926

    Article  CAS  Google Scholar 

  63. Cai Y-H (2012) Chemistry. 9:1569. http://www.ejchem.net

  64. Deligoz H, Yalcinyuva T, Ozgumus S, Yildirim S (2006) J Appl Polym Sci 100:810

    Article  CAS  Google Scholar 

  65. Bohning M, Goering H, Fritz A, Brzezinka K-W, Turky G, Schonhals A, Schartel B (2005) Macromolecules 38:2764

    Article  Google Scholar 

  66. Hollertz R, Arwin H, Faure B, Zhang Y, Bergström L, Wagberg L (2013) Cellulose (London) 20:1639

    Article  CAS  Google Scholar 

  67. Serra RSI, Ivirico JLE, Duenas JMM, Balado AA, Ribelles JLG, Sanchez MS (2002) J Polym Sci Part B Polym Phys 47:183

    Article  Google Scholar 

  68. Ren J, Adachi K (2003) Macromolecules 36:5180

    Article  CAS  Google Scholar 

  69. Kanchanasopa M, Runt J (2004) Macromolecules 37:863

    Article  CAS  Google Scholar 

  70. Mierzwa M, Floudas G, Dorgan J, Knauss D (2002) J Non-Cryst Solids 310:296

    Article  Google Scholar 

  71. Damaceanu MD, Rusu RD, Musteata VE, Bruma M (2011) Soft Mater 9:44

    Article  CAS  Google Scholar 

  72. Mohomed K, Gerasimov TG, Moussy F, Harmon JP (2005) Polymer 46:3847

    Article  CAS  Google Scholar 

  73. Bronnikov S, Kostromina S, Musteaţa V, Cozan V (2015) Liq Cryst 42:1102

    Article  CAS  Google Scholar 

  74. Havriliak S, Negami S (1967) Polymer 8:161

    Article  CAS  Google Scholar 

  75. Vogel H (1921) Phys Z 22:645

    CAS  Google Scholar 

  76. Fulcher GS (1925) J Am Ceram Soc 8:339

    Article  CAS  Google Scholar 

  77. Tammann G, Hesse W (1926) Z Anorg Allg Chem 156:245

    Article  Google Scholar 

  78. Chisca S, Musteata VE, Sava I, Bruma M (2011) Eur Polym J 47:1186

    Article  CAS  Google Scholar 

  79. Hamciuc E, Hamciuc C, Musteata VE, Kalvachev Y, Wolinska-Grabczyk A (2014) High Perform Polym 26:175

    Article  Google Scholar 

  80. Rekik H, Ghallabi Z, Royaud I, Arous M, Seytre G, Boiteux G, Kallel A (2013) Compos Part B 45:1199

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from Romanian-EEA Research Programme operated by MEN under the EEA Financial Mechanism 2009–2014 Project Contract No. 1SEE/2014 and IAEA for the research Project No. 17689/2013. The authors acknowledge the kind technical assistance offered by Dr. Rosu Dan and Dr. Varganici Cristian for the TG curves recording.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia Vasile.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cazacu, G., Darie-Nita, R.N., Chirila, O. et al. Environmentally Friendly Polylactic Acid/Modified Lignosulfonate Biocomposites. J Polym Environ 25, 884–902 (2017). https://doi.org/10.1007/s10924-016-0868-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-016-0868-2

Keywords

Navigation