Abstract
Blending of lignin into thermoplastic materials presents a challenge due to the lack of dispersion and compatibility in the thermoplastic matrices. Kraft lignin was fractionated by methanol to homogenize its structure and molecular weight, and blended with poly(butylene adipate-co-terephthalate) (PBAT) and poly(lactic acid) (PLA). It was found through Fourier transform infrared spectroscopy that the lignin–polyester interaction involves aromatic group interactions as well as hydrogen bonding between the polymers. The differences in the intermolecular interactions led to high compatibility of lignin with PBAT and low compatibility with PLA as reflected by glass transition temperature shifts on the differential scanning calorimetry (DSC) curves. The DSC study also indicated that the methanol soluble lignin (MSL) fraction interacts with both PLA and PBAT, but no sign of interaction was evident between PLA and PBAT, which is reflected in the scanning electron microscope images depicting the morphology of the ternary blend. The resulting tensile properties showed retention of toughness at 30 % lignin content, and bridging of stress between PLA and PBAT by MSL.






Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Satheesh Kumar MN, Mohanty AK, Erickson L, Misra M (2009) J Biobased Mater Bioenergy 3:1
Doherty WOS, Mousavioun P, Fellows CM (2011) Ind Crops Prod 33:259
Pouteau C, Dole P, Cathala B, Averous L, Boquillon N (2003) Polym Degrad Stab 81:9
Yoshida H, Morck R, Kringstad Knut P, Hatakeyama H (1987) Holzforschung—Int J Biol Chem Phys Technol Wood 41:171
Morck R, Reimann A, Kringstad Knut P (1988) Holzforschung—Int J Biol Chem Phys Technol Wood 42:111
Glasser WG, Sarkanen S (1989) In: Symposium at the 195th national meeting of the American chemical society, Toronto, Ontario, Canada, June 5–11, American Chemical Society, pp 545
de Oliveira W, Glasser WG (1994) Macromolecules 27:5
Thring RW, Griffin SL (1995) Can J Chem 73:629
Thring RW, Vanderlaan MN, Griffin SL (1999) J Wood Chem Technol 16:139
Ghosh I, Jain Rajesh K, Glasser Wolfgang G (1999) Lignin: historical, biological, and materials perspectives. American Chemical Society, Washington, DC, pp 331
Sun R, Tomkinson J, Griffiths S (2000) Int J Polym Anal Charact 5:531
Pucciariello R, Villani V, Bonini C, D’Auria M, Vetere T (2004) Polymer 45:4159
Leger CA, Chan FD, Schneider MH (2010) Bioresources 5:2239
Yue X, Chen F, Zhou X (2012) J Macromol Sci Phys 51:242
Yue X, Chen F, Zhou X, He G (2012) Int J Polym Mater 61:214
Tunc MS, Chheda J, van der Heide E, Morris J, van Heiningen A (2014) Holzforschung 68:401
Cui CZ, Sun RK, Argyropoulos DS (2014) ACS Sustain Chem Eng 2:959
Morck R, Yoshida H, Kringstad KP, Hatakeyama H (1986) Holzforschung 40:51
Mousavioun P, Doherty WOS, George G (2010) Ind Crops Prod 32:656
Li J, He Y, Inoue Y (2003) Polym Int 52:949
Li J, He Y, Inoue Y (2001) Polym J 33:336
Sahoo S, Misra M, Mohanty AK (2011) Compos A 42:1710
Kubo S, Kadla JF (2005) J Appl Polym Sci 98:1437
Pouteau C, Baumberger S, Cathala B, Dole P (2004) C R Biol 327:935
Nitz H, Semke H, Mulhaupt R (2001) Macromol Mater Eng 286:737
Kubo S, Kadla JF (2005) J Polym Environ 13:97
Kadla JF, Kubo S (2004) Compos A 35:395
Kubo S, Kadla JF (2005) Biomacromolecules 6:2815
Auras R, Loong-Tak L, Selke SEM, Tsuji H (2010) Poly(lactic acid). Synthesis, structures, properties, processing, and applications. Wiley, NY
Jiang L, Wolcott MP, Zhang JW (2006) Biomacromolecules 7:199
Yeh J-T, Tsou C-H, Huang C-Y, Chen K-N, Wu C-S, Chai WL (2010) J Appl Polym Sci 116:680
Barlow JW, Paul DR (1981) Annu Rev Mater Sci 11:299
Hunter CA, Sanders JKM (1990) J Am Chem Soc 112:5525
Lee S, Lee Y, Lee JW (2007) Macromol Res 15:44
Zhang N, Wang Q, Ren J, Wang L (2009) J Mater Sci 44:250
Utracki LA (1991) J Rheol 35:1615
Chivrac F, Kadlecova Z, Pollet E, Averous L (2006) J Polym Environ 14:393
Nyambo C, Mohanty AK, Misra M (2010) Biomacromolecules 11:1654
Ouyang W, Huang Y, Luo H, Wang D (2012) J Polym Environ 20:1
Acknowledgments
The financial support from the Natural Sciences and Engineering Research Council (NSERC), Canada Lignoworks Network to carry out this research is gratefully acknowledged. Authors also acknowledge MeadWestvaco for providing the lignin samples for this research.
Author information
Authors and Affiliations
Corresponding authors
Additional information
Mohamed A. Abdelwahab was on leave from Department of Chemistry, Tanta University, Tanta, 31527, Egypt.
Rights and permissions
About this article
Cite this article
Chen, R., Abdelwahab, M.A., Misra, M. et al. Biobased Ternary Blends of Lignin, Poly(Lactic Acid), and Poly(Butylene Adipate-co-Terephthalate): The Effect of Lignin Heterogeneity on Blend Morphology and Compatibility. J Polym Environ 22, 439–448 (2014). https://doi.org/10.1007/s10924-014-0704-5
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10924-014-0704-5