Skip to main content
Log in

An Improved Ultrasonic B-Scan Images Method for Delamination Defects in Composite Materials Based Optimized Modified Stockwell Transform

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Nondestructive testing with ultrasonic techniques represents a well-established method to detect the different types of defects within industrial specimens. An accurate interpretation of measured ultrasonic data is mandatory in order to decide about the quality of the material under control. Poor resolution of this data may mislead the controller to make a misdiagnosis. The application of advanced signal processing methods can help to improve the measured data and ease the interpretation of results, thus, reducing misdiagnosis. In this work, our aim is to propose a new algorithm to improve the resolution of B-scan images and to detect with accuracy the delamination defects close to surfaces in composite materials. The proposed method based on the iterative thresholding Shannon energy of an optimized modified Stockwell transform matrix. The performance of the proposed method is demonstrated using simulated B-scan images containing defects echoes close to the front surface and back wall surface in order to highlight the phenomenon of delamination. Further, the experimental tests were validated on a sample of carbon fiber reinforced polymer composite material with a delamination defects (close to the front surface and close to the back wall). The obtained results show effectively that the proposed method allows the improvement of the resolution and the detection of the delamination defects in both the simulated and experimental B-scan images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Karabutov, A.A., Podymova, N.B.: Quantitative analysis of the influence of voids and delaminations on acoustic attenuation in CFRP composites by the laser-ultrasonic spectroscopy method. Composites B 56, 238–244 (2014)

    Article  Google Scholar 

  2. Ismail, S.C., Ng, N., Ali, A., Sahari, B., Yusof, J.M., Chu, B.W.: Non-destructive inspection of multi-layered composites using ultrasonic signal processing. Mater. Sci. Eng. 17, 012045 (2011). https://doi.org/10.1088/1757-899X/17/1/012045

    Article  Google Scholar 

  3. Eremin, A.A.: Viscosity-driven attenuation of elastic guided waves in layered composite structures. Mater. Phys. Mech. 37, 42–51 (2018)

    Google Scholar 

  4. Haixing, Z.: Application research on ultrasonic phased array technology in weld seam inspection. J Phys: Conf Ser 1601, 42041 (2020)

    Google Scholar 

  5. Benammar, A., Kechida, A., Drai, R.: Signal quality improvement using a new TMSSE algorithm: application in delamination detection in composite materials. J. Nondestr. Eval. 36, 16 (2017)

    Article  Google Scholar 

  6. Drai, R., Khelil, M., Benchaala, A.: Time frequency and wavelet transform applied to selected problems in ultrasonics NDE. NDT E Int. 35(8), 567–572 (2002)

    Article  Google Scholar 

  7. Stockwell, R.G., Mansinha, L., Lowe, R.P.: Localisation of the complex spectrum: the S transform. IEEE Trans. Signal Process. (1996). https://doi.org/10.1109/78.492555

    Article  Google Scholar 

  8. Sejdić, E., Djurović, I., Jiang, J.A.: Window width optimized S-transform. EURASIP J. Adv. Signal Process. 2008, 672941 (2007). https://doi.org/10.1155/2008/672941

    Article  MATH  Google Scholar 

  9. Sahu, S.S., Panda, G., George, N.V.: An improved S-transform for time-frequency analysis. IEEE Int. Adv. Comput. Conf. 2009, 315–319 (2009). https://doi.org/10.1109/IADCC.2009.4809028

    Article  Google Scholar 

  10. Regimanu, B., Das, K.C., Rao, K.S., Rao, N.V.K.: Dither signal filtering in ring laser gyroscope using modified Stockwell transform. IEEE Sens. Lett. 2(3), 1–4 (2018). https://doi.org/10.1109/LSENS.2018.2865426

    Article  Google Scholar 

  11. Mansinha, L., Stockwell, R.G., Lowe, R.P., Eramian, M., Schincariol, R.A.: Local S-spectrum analysis of 1-D and 2-D data. Phys. Earth Planet. Inter. 103(3–4), 329–336 (1997)

    Article  Google Scholar 

  12. Moukadem, A., Bouguila, Z., OuldAbdeslam, D., Dieterlen, A.: A new optimized Stockwell transform applied on synthetic and real non-stationary signals. Digit. Signal Process. 46, 226–238 (2015)

    Article  MathSciNet  Google Scholar 

  13. Chatterjee, S., Samanta, K., Choudhury, N.R., Bose, R.: Detection of myopathy and ALS electromyograms employing modified window Stockwell transform. IEEE Sens. Lett. 3(7), 1–4 (2019). https://doi.org/10.1109/LSENS.2019.2921072

    Article  Google Scholar 

  14. Amirou, A., Ould-Abdeslam, D., Zidelmal, Z., Aidene, M., Merckle, J.: Using S-transform and Shannon energy for electrical disturbances detection. In: Industrial Electronics Society, IECON- 40th annual conference of the IEEE (2014). https://doi.org/10.1109/IECON.2014.7048849

  15. Zidelmal, Z., Amirou, A., Ould-Abdeslam, D., Moukadem, A., Dieterlen, A.: QRS detection using S-transform and Shannon energy. Comput. Methods Progr. Biomed. 116, 1–9 (2014)

    Article  Google Scholar 

  16. Chen, X.H., He, Z.H., Huang, D.J., Wen, X.T.: Low frequency shadow detection of gas reservoirs in time-frequency domain. Chin. J. Geophys. 52(1), 215–221 (2009)

    Google Scholar 

  17. George, N.V., Sahu, S.S., Mansinha, L., Tiampo, K.F., Panda, G.: Time localised band filtering using modified S-transform. Int. Conf. Signal Process. Syst. (2009). https://doi.org/10.1109/ICSPS.2009.63

    Article  Google Scholar 

  18. Assous, S., Boashash, B.: Evaluation of the modified S-transform for time-frequency synchrony analysis and source localization. EURASIP J. Adv. Signal Process. (2012). https://doi.org/10.1186/1687-6180-2012-49

    Article  Google Scholar 

  19. Demirli, R., Saniie, J.: Model-based estimation of ultrasonicechoes. Part I: analysis and algorithms. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(3), 787–802 (2001)

    Article  Google Scholar 

  20. Zhu, Y., Weight, J.P.: Ultrasonic nondestructive evaluation of highly scattering materialsusing adaptive filtering and detection. IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1994). https://doi.org/10.1109/58.265817

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdessalem Benammar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benyahia, A., Benammar, A. & Guessoum, A. An Improved Ultrasonic B-Scan Images Method for Delamination Defects in Composite Materials Based Optimized Modified Stockwell Transform. J Nondestruct Eval 41, 36 (2022). https://doi.org/10.1007/s10921-022-00868-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-022-00868-z

Keywords

Navigation