Skip to main content
Log in

Monitoring of Corrosion Extent in Steel S460MC by the Use of Magnetic Barkhausen Noise Emission

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Monitoring of corrosion extent is critical in bridge operation and civil buildings. Reducing the effective cross-sectional area of components can redistribute the stress state and increase the true stress in the critical parts of civil structures. Unexpected rupture of bodies can occur as a result of their over-stressing. However, it is not possible to take relevant samples from these structures for a laboratory analysis during their lifetime. For this reason, this study investigates the potential of magnetic Barkhausen noise analysis for real-time corrosion extent monitoring. This study demonstrates that Barkhausen noise emission drops down along with an increasing degree of corrosion of steel S460MC. Progressive and remarkable decrease of Barkhausen noise and alteration of extracted features result from increasing surface roughness and superimposing influence of the increasing thickness of the near-surface layers containing mainly iron oxides. Furthermore, it was found that corrosion on the surface also alters the relation between tensile stress and Barkhausen noise within the interaction volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Jiles, D.: Introduction to Magnetism and Magnetic Materials, 3rd edn. Taylor & Francis Group, New York (2016)

    Google Scholar 

  2. Chikazumi, S.: Physics of Ferromagnetism, 2nd edn. Oxford University Press, Oxford (2005)

    MATH  Google Scholar 

  3. Varga, R.: Domain Walls and Their Dynamics, 1st edn. Pavol Jozef Šafárik University, Košice (2014)

    Google Scholar 

  4. Liu, J., Tian, G.Y., Gao, B., Zeng, K., Zheng, Y., Chen, J.: Micro-macro characteristics between domain wall motion and magnetic Barkhausen noise under tensile stress. J. Magn. Magn. Mater. 493, e165719 (2020). https://doi.org/10.1016/j.jmmm.2019.165719

    Article  Google Scholar 

  5. Avila, J.A., Conde, F.F., Pinto, H.C., Rodriguez, J., Grijalba, F.A.F.: Microstructural and residuals stress analysis of friction stir welding of X80 pipeline steel plates using magnetic Barkhausen noise. J. Non-Destruct. Eval. 38, 86 (2019). https://doi.org/10.1007/s10921-019-0625-2

    Article  Google Scholar 

  6. Karpuschewski, B., Bleicher, O., Beutner, M.: Surface integrity inspection on gears using Barkhausen noise analysis. Proc. Eng. 19, 162–171 (2011). https://doi.org/10.1016/j.proeng.2011.11.096

    Article  Google Scholar 

  7. Sorsa, A., Santa-Aho, S., Wartiainen, J., Souminen, L., Vippola, M., Leviskä, K.: Effect of shot peening parameters to residual stress profiles and Barkhausen noise. J. Non-Destruct. Eval. 37, 1–11 (2018). https://doi.org/10.1007/s10921-018-0463-7

    Article  Google Scholar 

  8. Gatelier-Rothea, C., Chicois, J., Fougeres, R., Fleischmann, P.: Characterization of pure iron and (130 p.p.m.) carbon-iron binary alloy by Barkhausen noise measurements: study of the influence of stress and microstructure. Acta Metal. 46, 4873–4882 (1998). https://doi.org/10.1016/S1359-6454(98)00205-5

    Article  Google Scholar 

  9. Neslušan, M., Čížek, J., Kolařík, K., Minárik, P., Čilliková, M., Melikhová, O.: Monitoring of grinding burn via Barkhausen noise emission in case-hardened steel in large-bearing production. J. Mater. Process. Technol. 240, 104–117 (2017). https://doi.org/10.1016/j.matprotec.2016.09.015

    Article  Google Scholar 

  10. Čížek, J., Neslušan, M., Čilliková, M., Mičietová, A., Melikhova, O.: Modification of steel surfaces induced by turning: non-destructive characterization using Barkhausen noise and positron annihilation. J. Phys. D Appl. Phys. 47, 1–17 (2014). https://doi.org/10.1088/0022-3727/47/44/445301

    Article  Google Scholar 

  11. Stupakov, A., Perevertov, O., Tomáš, I., Skrbek, B.: Evaluation of surface decarburization depth by magnetic Barkhausen noise technique. J. Magn. Magn. Mater. 323, 1692–1697 (2011). https://doi.org/10.1016/j.jmmm.2011.01.039

    Article  Google Scholar 

  12. Neslušan, M., Minárik, P., Grenčík, J., Trojan, K., Zgútová, K.: Non-destructive evaluation of the railway wheel surface damage after long-term operation via Barkhausen noise technique. Wear 420–421, 195–206 (2019). https://doi.org/10.1016/j.wear.2018.10.0146

    Article  Google Scholar 

  13. Zgútová, K., Neslušan, M., Kolářik, K., Šrámek, J.: Non-destructive Evaluation of Stress State of the Highway Bridge via Barkhausen Noise Technique, Progress in Mechanics and Materials in Design. In: 7th International conference on Mechanics and Materials in Design, Albufeira, Portugal (2017)

  14. Neslušan, M., Bahleda, F., Trojan, K., Pitoňák, M., Zgútová, K.: Monitoring of over-stressing of steel wires by the Barkhausen noise. J. Magn. Magn. Mater. 513, e167134 (2020). https://doi.org/10.1016/j.jmmm.2020.167134

    Article  Google Scholar 

  15. Neslušan, M., Bahleda, F., Minárik, P., Zgútová, K., Jambor, M.: Non-destructive monitoring of corrosion extent in steel rope wires via Barkhausen noise emission. J. Magn. Magn. Mater. 484, 179–187 (2019). https://doi.org/10.1016/j.jmmm.2019.04.017

    Article  Google Scholar 

  16. Neslušan, M., Bahleda, F., Moravčík, M., Zgútová, K., Pastorek, F.: Assessment of tendons prestressing after long-term service via the Barkhausen noise technique. Materials 12, e3450 (2019). https://doi.org/10.3390/ma12203450

    Article  Google Scholar 

  17. Anania, L., Badala, A., D’Agata, G.: Damage and collapse mode of existing post tensioned precast concrete bridge: the case of Petrulla viaduct. Eng. Struct. 162, 226–244 (2018). https://doi.org/10.1016/j.engstruct.2018.02.039

    Article  Google Scholar 

  18. Zergoug, M., Kamel, G., Benchaala, A.: Determination of Micro Structural Corrosion by BN, Research Report of Laboratoire d’Electronique et d’Electrotechnique, Alger (2004)

  19. Alamin, M., Tian, G.Y., Andrews, A., Jackson, P.: Principal component analysis of pulsed eddy current response from corrosion in mild steel. IEEE Sens. J. 12, 2548–2553 (2012). https://doi.org/10.1109/JSEN.2012.2195308

    Article  Google Scholar 

  20. Xu, J., Sun, H., Cai, S.: Effect of symmetrical broken wires damage on mechanical characteristics of stay cable. J. Sound Vib. 461, e114920 (2019). https://doi.org/10.1016/j.jsv.2019.114920

    Article  Google Scholar 

  21. Li, S., Hu, P., Zhao, X., Chen, K., Li, J.: Atmospheric corrosion performance of wire rope sling in sulphur dioxide-polluted environment. Adv. Mech. Eng. 9, 1–12 (2017). https://doi.org/10.1177/1687814017707479

    Article  Google Scholar 

  22. Antunes, R.A., Ichikawa, R.U., Martinez, L.G., Costa, I.: Characterization of corrosion products on carbon steel exposed to natural weathering and to accelerated corrosion tests. Int. J. Corros. (2014). https://doi.org/10.1155/2014/419570

    Article  Google Scholar 

  23. Manh, T.L., Caleyo, F., Hallen, J.M., Pérez-Benitez, J.A., Espina-Hernández, J.H.: Novel method for the accurate determination of magnetocrystalline energy from Barkhausen noise in ferromagnetic materials. Mater. Sci. Eng. B 225, 98–107 (2017). https://doi.org/10.1016/j.mseb.2017.08.015

    Article  Google Scholar 

  24. Blažek, D., Neslušan, M., Mičica, M., Pištora, J.: Extraction of Barkhausen noise from the measured raw signal in high-frequency regimes. Measurement 94, 456–463 (2016). https://doi.org/10.1016/j.measurement.2016.08.022

    Article  Google Scholar 

  25. Deng, Y., Li, Z., Chen, J., Qi, X.: The effect of the structure characteristics on Magnetic Barkhausen noise in commercial steels. J. Magn. Magn. Mater. 451, 276–282 (2018). https://doi.org/10.1016/j.jmmm.2017.11.041

    Article  Google Scholar 

  26. Puppin, E.: Statistical properties of Barkhausen noise in thin Fe films. Phys. Rev. Lett. 84, e5415 (2000). https://doi.org/10.1103/PhysRevLett.84.4705

    Article  Google Scholar 

  27. Hubert, A., Schäfer, R.: Magnetic Domains: The Analysis of Magnetic Microstructures, 1st edn. Springer, Berlin (1998)

    Google Scholar 

  28. Cullity, B.D., Graham, C.D.: Introduction to the Magnetic Materials, 2nd edn. IEEE Press, New Jersey (2009)

    Google Scholar 

  29. Martínez-Ortiz, P., Pérez-Benitez, J.A., Espina-Hernández, J.H., Caleyo, F., Hallen, J.M.: On the estimation of the magnetic easy axis in pipeline steels using magnetic Barkhausen noise. J. Magn. Magn. Mater. 374, 67–74 (2015). https://doi.org/10.1016/j.jmmm.2015.10.036

    Article  Google Scholar 

  30. Chávez-Gonzalez, A.F., Martínez-Ortiz, P., Pérez-Benitez, J.A., Espina-Hernández, J.H., Caleyo, F.: Comparison of angular dependence of magnetic Barkhausen noise of hysteresis and initial magnetization curve in API5L steel. J. Magn. Magn. Mater. 446, 18–27 (2017). https://doi.org/10.1016/j.jmmm.2017.08.089

    Article  Google Scholar 

  31. Amiri, M.S., Thielen, M., Rabung, M., Marx, M., Szielasko, K., Boller, Ch.: On the role of crystal and stress anisotropy in magnetic Barkhausen noise. J. Magn. Magn. Mater. 372, 16–22 (2014). https://doi.org/10.1016/j.jmmm.2014.07.038

    Article  Google Scholar 

  32. Šrámek, J., Neslušan, M., Bahleda, F., Zgútová, K., Schenk, P.: Influence of sample size and magnetizing voltage on Barkhausen noise during bending and uniaxial tensile test. Acta Phys. Polonica A 137, 640–643 (2020). https://doi.org/10.12693/APhysPolA.137.640

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by Science Grant Agency of the Slovak Republic through project No. 1/0336/18. This publication was realized with support of Operational Program Integrated Infrastructure 2014 - 2020 of the project: Innovative Solutions for Propulsion, Power and Safety Components of Transport Vehicles, code ITMS 313011V334, co-financed by the European Regional Development Fund. Authors are grateful to the Slovak Research and Development Agency for support in experimental works by the projects No. APVV-16-0276 and APVV-14-0772.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, M.N. and M.J.; methodology, M.N., F.P. and M.P.; software, V.P. and P.M.; validation, M.J. and J.G.; formal analysis, F.P. and M.P.; investigation, M.J., M.N., F.P., M.P., V.P. and P.M.; resources, F.P. and J.G.; data curation, M.J. and F.P., writing—original draft preparation, M.N., F.P. and M.J.; writing—review and editing, M.J., M.N. and P.M.; visualization, P.M. and M.P.; supervision, M.P. and F.P.; project administration, F.P. and M.P.; funding acquisition, F.P. and J.G.

Corresponding author

Correspondence to F. Pastorek.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jančula, M., Neslušan, M., Pastorek, F. et al. Monitoring of Corrosion Extent in Steel S460MC by the Use of Magnetic Barkhausen Noise Emission. J Nondestruct Eval 40, 69 (2021). https://doi.org/10.1007/s10921-021-00803-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-021-00803-8

Keywords

Navigation