Skip to main content
Log in

Water Migration in One-Side Heated Concrete: 4D In-Situ CT Monitoring of the Moisture-Clog-Effect

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Explosive spalling due to fire exposure in concrete structures can lead severe damage and, in the worst case, to premature component failure. For this reason, an in situ investigation of water migration in concrete due to surface heating was undertaken. During these experiments, a miniaturized concrete specimen within a confining and insulating double-hull was subjected to surface heating during simultaneous X-ray computed tomography (CT) scanning. Through the use of subtraction-based image analysis techniques, it was possible to observe and quantify not only drying within areas of the concrete matrix close to the heated surface, but also the migration of moisture to both pore and matrix regions deeper within the specimen. It was also discovered that the correction of CT images for specimen deformation using DVC and variable detector performance using calibrated image filters significantly improved the quality of the results. This clearly demonstrates the potential of X-ray CT for evaluation of other rapid-density-change phenomena in concrete and other building materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kordina, K.: Planung unterirdischer Verkehrsanlagen gegen Brandgefahren. In: Tunnel (2004)

  2. Kalifa, P., Chéné, G., Gallé, C.: High-temperature behaviour of HPC with polypropylene fibres From spalling to microstructure. Cem. Concr. Res. 31, 1487–1499 (2001)

    Article  Google Scholar 

  3. Jansson, R., Boström, L.: Fire spalling—the moisture effect. In: Dehn F., Koenders, E.A.B. (eds.) 1st International Workshop on Concrete Spalling due to Fire Exposure, Leipzig. pp. 120–129 (2009)

  4. Van der Heijden, G.H.A., et al.: One-dimensional scanning of moisture in heated porous building materials with NMR. J. Magn. Reson. 208, 235–242 (2011)

    Article  Google Scholar 

  5. Weber, B., et al.: Neutron radiography of heated high-performance mortar. MATEC Web Conf. 6, 8 (2013)

    Article  Google Scholar 

  6. Toropovs, N., et al.: Real-time measurement of temperature, pressure and moisture profiles in high-performance concrete exposed to high temperatures during neutron radiography imaging. Cem. Concr. Res. 68, 166–173 (2015)

    Article  Google Scholar 

  7. Powierza, B.: In-Situ CT observation of water migration in heated concrete. In: 3rd International Conference on Tomography of Materials and Structures, Lund, Sweden (2017)

  8. Stelzner, L., et al.: Analysis of moisture transport in unilateral-heated dense high-strength concrete. In: 5th International Workshop on Concrete Spalling due to Fire Exposure, Borås, Sweden (2017)

  9. Masschaele, B., et al.: High-speed thermal neutron tomography for the visualization of water repellents, consolidants and water uptake in sand and lime stones. Radiat. Phys. Chem. 71(3–4), 807–808 (2004)

    Article  Google Scholar 

  10. Hillenbach, A., et al.: High flux neutron imaging for high-speed radiography, dynamic tomography and strongly absorbing materials. Nucl. Instrum. Methods Phys. Res. Sect. A 542(1–3), 116–122 (2005)

    Article  Google Scholar 

  11. Martz, H.E., et al.: Computerized-tomography analysis of reinforced-concrete. ACI Mater. J. 90(3), 259–264 (1993)

    Google Scholar 

  12. Morgan, I.L., et al.: Examination of concrete by computerized-tomography. J. Am. Concr. Inst. 77(1), 23–27 (1980)

    Google Scholar 

  13. Flannery, B.P., et al.: Three-dimensional X-ray microtomography. Science 237(4821), 1439–1444 (1987)

    Article  Google Scholar 

  14. Feldkamp, L.A., Davis, L.C., Kress, J.W.: Practical cone-beam algorithm. J. Opt. Soc. Am. A 1(6), 612–619 (1984)

    Article  Google Scholar 

  15. Landis, E.N., Nagy, E.N., Keane, D.T.: Microtomographic measurements of internal damage in portland-cement-based composites. J. Aerosp. Eng. 10(1), 2–6 (1997)

    Article  Google Scholar 

  16. Asahina, D., Landis, E.N., Bolander, J.E.: Modeling of phase interfaces during pre-critical crack growth in concrete. Cem. Concr. Compos. 33(9), 966–977 (2011)

    Article  Google Scholar 

  17. Poinard, C., et al.: Compression triaxial behavior of concrete: the role of the mesostructure by analysis of X-ray tomographic images. Eur. J. Environ. Civ. Eng. 16, S115–S136 (2012)

    Article  Google Scholar 

  18. Oesch, T.S., Landis, E.N., Kuchma, D.A.: Conventional concrete and UHPC performance-damage relationships identified using computed tomography. J. Eng. Mech. 142(12), 531–538 (2016)

    Article  Google Scholar 

  19. Oesch, T.S.: In-Situ CT investigation of pull-out failure for reinforcing bars embedded in conventional and high-performance concretes. In: 6th Conference on Industrial Computed Tomography (ICT), Wels, Austria: NDT.net (2016)

  20. Paetsch, O., et al.: 3D corrosion detection in time-dependent CT images of concrete. In: Digital Industrial Radiology and Computed Tomography Conference, Ghent, Belgium (2015)

  21. Yang, L., et al.: In-Situ tracking of water transport in cement paste using X-ray computed tomography combined with CsCl enhancing. Mater. Lett. 160, 381–383 (2015)

    Article  Google Scholar 

  22. Boone, M.A., et al.: 3D mapping of water in oolithic limestone at atmospheric and vacuum saturation using X-ray micro-CT differential imaging. Mater. Charact. 97, 150–160 (2014)

    Article  Google Scholar 

  23. Yang, F., et al.: Visualization of water drying in porous materials by X-ray phase contrast imaging. J. Microsc. 261(1), 88–104 (2016)

    Article  Google Scholar 

  24. Wildenschild, D., et al.: Using X-ray computed tomography in hydrology: systems, resolutions, and limitations. J. Hydrol. 267(3), 285–297 (2002)

    Article  Google Scholar 

  25. Wildenschild, D., et al.: Quantitative analysis of flow processes in a sand using synchrotron-based X-ray microtomography. Vadose Zone J. 4(1), 112–126 (2005)

    Article  Google Scholar 

  26. Dauti, D., et al.: Analysis of moisture migration in concrete at high temperature through in situ neutron tomography. Cem. Concr. Res. 111, 41–55 (2018)

    Article  Google Scholar 

  27. Schneider, U.: Compressive strength for service and accident conditions. Mater. Struct. 28(181), 410–414 (1995)

    Google Scholar 

  28. Kalifa, P., Menneteau, F.-D., Quenard, D.: Spalling and pore pressure in HPC at high temperatures. Papers presented at the symposium on transport properties and microstructure of cement-based systems, vol. 30, pp. 1915–1927 (2000)

    Article  Google Scholar 

  29. Feldkamp, L.A., Davis, L.C., Kress, J.W.: Practical cone-beam algorithm. J. Opt. Soc. Am. A 1(6), 612–619 (1984)

    Article  Google Scholar 

  30. Rüegsegger, P., et al.: Standardization of computed tomography images by means of a material-selective beam hardening correction. J. Comput. Assist. Tomogr. 2(2), 184–188 (1978)

    Article  Google Scholar 

  31. Weise, F., Onel, Y., Goebbels, J.: Analyse des Gefuge- und Feuchtezustandes in mineralischen Baustoffen mit der Rontgen-3D-Computertomografie. Bauphysik 29(3), 194–201 (2007)

    Article  Google Scholar 

  32. Bay, B.K., et al.: Digital volume correlation: three-dimensional strain mapping using X-ray tomography. Exp. Mech. 39(3), 217–226 (1999)

    Article  Google Scholar 

  33. Roberts, B.C., Perilli, E., Reynolds, K.J.: Application of the digital volume correlation technique for the measurement of displacement and strain fields in bone: a literature review. J. Biomech. 47(5), 923–934 (2014)

    Article  Google Scholar 

  34. Alba, A., et al.: Phase correlation with sub-pixel accuracy: a comparative study in 1D and 2D. Comput. Vis. Image Underst. 137(Suppl C), 76–87 (2015)

    Article  Google Scholar 

  35. Foroosh, H., Zerubia, J.B., Berthod, M.: Extension of phase correlation to subpixel registration. Trans. Image Proc. 11(3), 188–200 (2002)

    Article  Google Scholar 

  36. DIN, V., 1-2 Eurocode 2: Planung von Stahlbeton-und Spann-betontragwerken-Teil 1-2: Allgemeine Regeln-Tragwerksbemessung für den Brandfall, Ausgabe Dezember (2010)

Download references

Acknowledgements

The authors would like to acknowledge their gratitude to Dr. Illerhaus, Mr. Meinel and Mr. Onel for their support and advice regarding CT scanning techniques and analysis methods. The work was internally funded by the Bundesanstalt für Materialforschung und –prüfung (BAM) through the Menschen-Ideen-Strukturen (MIS) Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bartosz Powierza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Powierza, B., Stelzner, L., Oesch, T. et al. Water Migration in One-Side Heated Concrete: 4D In-Situ CT Monitoring of the Moisture-Clog-Effect. J Nondestruct Eval 38, 15 (2019). https://doi.org/10.1007/s10921-018-0552-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-018-0552-7

Keywords

Navigation