Skip to main content
Log in

Air-Coupled Ultrasonic Signal Processing Method for Detection of Lamination Defects in Molded Composites

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

In order to improve signal-to-noise ratio (SNR) of air-coupled ultrasonic signal in the detection of lamination defects in molded composite, the pulse compression and wavelet filtering hybrid signal processing method is proposed. The selection principle of parameters of the hybrid signal processing method is studied. The actual detection results of molded composite show that the hybrid method is very effective in improving the SNR of air-coupled ultrasonic signal when selecting reasonable parameters (The experiment results demonstrate that the optimal parameters are 13-bit Barker code sequences signal with three-cycle per sub-pulse, db9 wavelet, six decomposition levels, and soft threshold function.). An improvement in SNR up to 18.81 dB is attained compared with the original received signal. The quantitative accuracy of defects in C-scan image based on the hybrid method is also very high, and defects as small as \(\emptyset \)5 mm can be easily identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Tay, T.E., Shen, F.: Analysis of delamination growth in laminated composites with consideration for residual thermal stress effects. J. Compos. Mater. 36(11), 1299–1320 (2002)

    Article  Google Scholar 

  2. Crasto, A.S., Kim, R.Y.: Hygrothermal Influence on the Free-Edge Delamination of Composites Under Compressive Loading. Composite Materials: Fatigue and Fracture, vol. 6. ASTM International, West Conshohocken (1997)

    Google Scholar 

  3. Atsushi, H., Yuhei, Y., Yang, J., Yasumoto, S., Tsunaji, K.: Detection and quantitative evaluation of defects in glass fiber reinforced plastic laminates by microwaves. Compos. Struct. 128(15), 134–144 (2015)

    Google Scholar 

  4. Junliang, D., Byungchil, K., Alexandre, L., Peter, M., Nico, D., Citrin, D.S.: Nondestructive evaluation of forced delamination in glass fiber-reinforced composites by terahertz and ultrasonic waves. Composites B 79(15), 667–675 (2015)

    Google Scholar 

  5. Schilling, P.J., Karedla, B.P.R., Tatiparthi, A.K., et al.: X-ray computed microtomography of internal damage in fiber reinforced polymer matrix composites. Compos. Sci. Technol. 65(14), 2071–2078 (2005)

    Article  Google Scholar 

  6. Imielińska, K., Castaings, M., Wojtyra, R., et al.: Air-coupled ultrasonic C-scan technique in impact response testing of carbon fibre and hybrid: glass, carbon and Kevlar/epoxy composites. J. Mater. Process. Technol. 157, 513–522 (2004)

    Article  Google Scholar 

  7. Garcia-Rodriguez, M., Yañez, Y., Garcia-Hernandez, M.J., et al.: Application of Golay codes to improve the dynamic range in ultrasonic Lamb waves air-coupled systems. NDT&E Int. 43(8), 677–686 (2010)

    Article  Google Scholar 

  8. Döring, J., Bovtun, V., Gaal, M., et al.: Piezoelectric and electrostrictive effects in ferroelectret ultrasonic transducers. J. Appl. Phys. 112(8), 084505 (2012)

    Article  Google Scholar 

  9. Bass, H.E., Sutherland, L.C., Zuckerwar, A.J., et al.: Atmospheric absorption of sound: further developments. J. Acoust. Soc. Am. 97(1), 680–683 (1995)

    Article  Google Scholar 

  10. Pallav, P., Gan, T.H., Hutchins, D.A.: Elliptical-Tukey chirp signal for high-resolution, air-coupled ultrasonic imaging. IEEE Trans. Ultrason. Ferroelect. Freq. Control 54(8), 1530–1540 (2007)

    Article  Google Scholar 

  11. Abd-Elmoniem, K.Z., Youssef, A.B.M., Kadah, Y.M.: Real-time speckle reduction and coherence enhancement in ultrasound imaging via nonlinear anisotropic diffusion. IEEE Trans. Biomed. Eng. 49(9), 997–1014 (2002)

    Article  Google Scholar 

  12. Achim, A., Bezerianos, A., Tsakalides, P.: Novel Bayesian multiscale method for speckle removal in medical ultrasound images. IEEE Trans. Med. Imaging 20(8), 772–783 (2001)

    Article  Google Scholar 

  13. Abbate, A., Koay, J., Frankel, J., et al.: Signal detection and noise suppression using a wavelet transform signal processor: application to ultrasonic flaw detection. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44(1), 14–26 (1997)

    Article  Google Scholar 

  14. Hutchins, D., Burrascano, P., Davis, L., et al.: Coded waveforms for optimised air-coupled ultrasonic nondestructive evaluation. Ultrasonics 54(7), 1745–1759 (2014)

    Article  Google Scholar 

  15. Gan, T.H., Hutchins, D.A., Billson, D.R., et al.: The use of broadband acoustic transducers and pulse-compression techniques for air-coupled ultrasonic imaging. Ultrasonics 39(3), 181–194 (2001)

    Article  Google Scholar 

  16. Lei, X., Heng, Z., Shangkai, G.: Barker code in TCD ultrasound systems to improve the sensitivity of emboli detection. Ultrasound Med. Biol. 35(1), 94–101 (2009)

    Article  Google Scholar 

  17. Garcia-Rodriguez, M., Yañez, Y., Garcia- Hernandez, M.J., et al.: Application of Golay codes to improve the dynamic range in ultrasonic Lamb waves air-coupled systems. NDT&E Int. 43(8), 677–686 (2010)

  18. Garcia-Rodriguez, M., Yañez, Y., Garcia-Hernandez, M., et al.: Lamb wave generation with an air-coupled piezoelectric array using square chirp excitation. In: 19th International Congress on Acoustics (2007)

  19. Lu, Y., Finger, A.: Ultrasonic Beacon-based local position system using broadband PN (pseudo noise)-Chirp codes. In: The 9th IASTED International Conference on Wireless and Optical Communications (2009)

  20. Kravchenko, V.F., Sanchez-Ramirez, J., Ponomarev, V.I.: Properties of different wavelet filters used for ultrasound and mammography compression. Telecommun. Radio Eng. 67(10), 853–865 (2008)

    Article  Google Scholar 

  21. Donoho, D.L.: De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41(3), 613–627 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Fund of the Innovation Fund of Aerospace Science and Technology [Grant No. CASC06].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honggang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Zhou, Z. Air-Coupled Ultrasonic Signal Processing Method for Detection of Lamination Defects in Molded Composites. J Nondestruct Eval 36, 45 (2017). https://doi.org/10.1007/s10921-017-0425-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-017-0425-5

Keywords

Navigation