Skip to main content
Log in

A Fully Non-contact, Air-Coupled Ultrasonic Measurement of Surface Breaking Cracks in Concrete

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Previous researchers have shown that the surface wave transmission coefficient across a surface breaking crack in concrete can be used to estimate the depth of the crack. This study is the first to investigate a fully non-contact ultrasonic technique using air-coupled transducers which can reliably measure the surface wave transmission coefficient across a surface breaking crack in concrete. Using this setup, the transmission coefficient of Rayleigh surface waves is measured for three notches with different depths (0.5, 1, and 2 cm). Then, the relationship between the transmission coefficient and the normalized notch depth is experimentally reconstructed and compared with analytical and numerical results. It is demonstrated that the proposed fully non-contact technique is efficient and promising as a field application in civil infrastructure. The advantages of the proposed non-contact technique compared to existing methods are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mendelsohn, D.A., Keer, L.M., Achenbach, J.D.: Scattering of elastic waves by a surface breaking crack. Wave Mot. 2(3), 277–292 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  2. Kim, J.-Y., Rokhlin, S.I.: Surface acoustic wave measurements of small fatigue cracks initiated from a surface cavity. Int. J. Solids Struct. 39(3), 1487–1504 (2002)

    Article  MATH  Google Scholar 

  3. Blackshire, J.L., Sathish, S.: Near-field ultrasonic scattering from surface-breaking cracks. Appl. Phys. Lett. 80(18), 3442–3444 (2002)

    Article  Google Scholar 

  4. Achenbach, J.D., Keer, L.M., Mendelsohn, D.A.: Elastodynamic analysis of an edge crack. J. Appl. Mech. 47, 551–556 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  5. Hevin, G., Abraham, O., Pedersen, H.A., Campillo, M.: Characterization of surface cracks with Rayleigh waves: a numerical model. NDT&E Int. 31(4), 289–297 (1998)

    Article  Google Scholar 

  6. Sansalone, M., Lin, J.M., Streett, W.B.: Determining the depth of surface-opening cracks using impact generated stress waves and time-of-flight technique. ACI Mater. J. 95(2), 168–177 (1998)

    Google Scholar 

  7. Shin, S.-W., Zhu, J., Min, J.-Y., Popovics, J.S.: Crack depth estimation in concrete using energy transmission of surface waves. ACI Mater. J. 105(5), 510–516 (2008)

    Google Scholar 

  8. Seher, M., In, C.-W., Kim, J.-Y., Kurtis, K.E., Jacobs, L.J.: Numerical and experimental study of crack depth measurement in concrete using diffuse ultrasound. J. Nondestr. Eval. 32, 81–92 (2013)

    Article  Google Scholar 

  9. Kee, S.-H., Zhu, J.: Using air-coupled sensors to determine the depth of a surface-breaking crack in concrete. J. Acoust. Soc. Am. 127(3), 1279–1287 (2010)

    Article  Google Scholar 

  10. Kee, S.-H., Zhu, J.: Effects of sensor locations on air-coupled surface wave transmission measurements across a surface-breaking crack. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(2), 427–436 (2011)

    Article  Google Scholar 

  11. Viktorov, I.A.: Rayleigh Waves and Lamb Waves—Physical Theory and Application. Plenum, New York (1967)

    Book  Google Scholar 

  12. Angel, Y.C., Achenbach, J.D.: Reflection and transmission of obliquely incident Rayleigh waves by a surface-breaking crack. J. Acoust. Soc. Am. 75(2), 313–319 (1984)

    Article  MATH  Google Scholar 

  13. Yew, C.H., Chen, K.G., Wang, D.L.: An experimental study of interaction between surface waves and a surface breaking crack. J. Acoust. Soc. Am. 75(1), 189–196 (1984)

    Article  Google Scholar 

  14. Popovics, J.S., Song, W.-J., Ghandehari, M., Subramaniam, K.V., Achenbach, J.D., Shah, S.P.: Application of surface wave transmission measurements for crack depth determination in concrete. ACI Mater. J. 97, 127–135 (2000)

    Google Scholar 

  15. Song, W.-J., Popovics, J.S., Aldrin, J.C., Shah, S.P.: Measurement of surface wave transmission coefficient across surface-breaking cracks and notches in concrete. J. Acoust. Soc. Am 113(2), 717–725 (2003)

    Article  Google Scholar 

  16. Castaings, M., Cawley, P.: The generation, propagation, and detection of Lamb waves in plates using air-coupled ultrasonic transducers. J. Acoust. Soc. Am 100(5), 3070–3077 (1996)

    Article  Google Scholar 

  17. Castaing, M., Cawley, P., Farlow, R., Hayward, G.: Single sided inspection of composite materials using air coupled ultrasound. J. Nondestr. Eval. 17(1), 37–45 (1998)

    Article  Google Scholar 

  18. Kazys, R., Demcenko, A., Zukauskas, E., Mazeika, L.: Air-coupled ultrasonic inverstigation of multi-layered composite materials. Ultrasonics 44, 819–822 (2006)

    Article  Google Scholar 

  19. Ramadas, C., Balasubramaniam, K., Joshi, M., Krishnamurthy, C.V.: Characterisation of rectangular type delamination in composite laminates through B- and D-scan images generated using Lamb waves. NDT&E Int. 44, 281–289 (2011)

  20. Chakrapani, S.K., Padiyar, M.J., Balasubramaniam, K.: Crack detection in full size Cz-silicon wafers using Lamb wave air coupled ultrasonic testing (LAC-UT). J. Nondestr. Eval. 31, 46–55 (2012)

    Article  Google Scholar 

  21. Garnier, V., Piwakowski, B., Abraham, O., Villain, G., Payan, C., Chaix, J.F.: Acoustic techniques for concrete evaluation: improvements, comparisons and consistency. Constr. Build. Mater. 43, 598–613 (2013)

    Article  Google Scholar 

  22. Abraham, O., Piwakowski, B., Villain, B., Durand, O.: Non-contact, automated surface wave measurements for the mechanical characterization of concrete. Constr. Build. Mater. 37, 904–915 (2012)

    Article  Google Scholar 

  23. Piwakowski, B., Kaczmarek, M., Safinowski, P.: Automated non destructive testing by non-contact surface waves. AIP Conf. Proc. 255, 255–258 (2012)

    Article  Google Scholar 

  24. Goueygou, M., Lafhaj, Z., Soltani, F.: Assessment of porosity of mortar using ultrasonic Rayleigh waves. NDT E Int. 42, 353–360 (2009)

    Article  Google Scholar 

  25. Soltani, F., Goueygou, M., Lafhaj, Z., Piwakowski, B.: Relationship between ultrasonic Rayleigh wave propagation and capillary porosity in cement paste with variable water content. NDT E Int. 54, 75–83 (2013)

    Article  Google Scholar 

  26. Masserey, B., Mazza, E.: Analysis of the near-field ultrasonic scattering at a surface crack. J. Acoust. Soc. Am. 118, 3585–3594 (2005)

    Article  Google Scholar 

  27. Sachse, W., Pao, Y.H.: Determination of phase and group velocities of dispersive waves in solids. J. Appl. Phys. 49, 4320–4327 (1978)

    Article  Google Scholar 

  28. In, C.-W., Kim, J.-Y., Kurtis, K.E., Jacobs, L.J.: Characterization of ultrasonic Rayleigh surface waves in asphaltic concrete. NDT E Int. 42, 610–617 (2009)

    Article  Google Scholar 

  29. Cheng, A., Achenbach, J.D.: A roller device scan for surface-breaking cracks and to determine crack depth by self-calibrating ultrasonic technique. Res. Nondestr. Eval. 7, 185–194 (1996)

    Article  Google Scholar 

  30. WebPlotDigitizer, “http://arohatgi.info/WebPlotDigitizer/app/

Download references

Acknowledgments

This work is supported by the German Academic Exchange Service (DAAD) through a Graduate Research Assistantship for Fabian Schempp. Additional funding has been provided by the Electric Power Research Institute (EPRI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence J. Jacobs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

In, CW., Schempp, F., Kim, JY. et al. A Fully Non-contact, Air-Coupled Ultrasonic Measurement of Surface Breaking Cracks in Concrete. J Nondestruct Eval 34, 272 (2015). https://doi.org/10.1007/s10921-014-0272-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-014-0272-6

Keywords

Navigation