Skip to main content
Log in

Temperature Independent Damage Detection in Plates Using Redundant Signal Measurements

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

This paper describes a method to detect notch like damages in plates using piezoelectric transducers. The method does not use prior baseline data for damage detection. A single pair of piezoelectric wafer transducers made of Lead Zirconate Titanate (PZT) is attached back to back on the opposite sides of a plate and are used for simultaneous actuation and sensing. A notch, which is a sudden change in thickness of the plate, leads to mode conversion of Lamb waves. The mode converted wave component in the measured signal is then separated from the other Lamb wave mode components using polarization characteristics of the piezoelectric wafer transducers. The damage index is a function of the amplitude of this mode converted component of the signal. In real world situations, the damage index will not be exactly zero due to inaccuracy in transducer collocation and non-uniformity in their bonding conditions. Therefore, a (non-zero) threshold for the damage index needs to be established to avoid false alarms. True to the spirit of baseline-free damage detection, this threshold is computed from the signals acquired only from the current state of the structure. This is achieved by using redundancy in signal measurements. Since the method detects damages without having to rely on baseline data, environmental variations like temperature change do not affect its performance. Results from numerical simulations as well as experiments on aluminum specimens are provided to demonstrate the effectiveness of the method described above.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rose, J.L.: Ultrasonic Waves in Solid Media. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  2. Boller, C., Chang, F., Fujino, Y.: Encyclopedia of Structural Health Monitoring. Wiley, New York (2009)

    Book  Google Scholar 

  3. Staszewski, W., Boller, C., Tomlinson, G.R.: Health Monitoring of Aerospace Structures: Smart Sensor Technologies and Signal Processing. Wiley, New York (2004)

    Google Scholar 

  4. Rhian Green, E.: Acoustic emission in composite laminates. J. Nondestruct. Eval. 17, 117–127 (1998)

    Article  Google Scholar 

  5. Donskoy, D.M., Sutin, A.M.: Vibro-acoustic modulation nondestructive evaluation technique. J. Intell. Mater. Syst. Struct. 9, 765 (1998)

    Article  Google Scholar 

  6. Lamb, H.: On waves in an elastic plate. Proc. R. Soc. Lond. Ser. A, Contain. Pap. Math. Phys. Character 93, 114–128 (1917)

    Article  Google Scholar 

  7. Auld, B.A.: Acoustic Fields and Waves in Solids. Krieger, Melbourne (1990). 2 Vol. Set

    Google Scholar 

  8. Viktorov, I.: Rayleigh and Lamb Waves: Physical Theory and Applications. Plenum, New York (1967)

    Google Scholar 

  9. Staszewski, W.J.: Structural health monitoring using guided ultrasonic waves. In: Advances in Smart Technologies in Structural Engineering, pp. 117–162 (2004)

    Google Scholar 

  10. Raghavan, A., Cesnik, C.E.: Review of guided-wave structural health monitoring. Shock Vib. Dig. 39, 91–114 (2007)

    Article  Google Scholar 

  11. Dalton, R.P., Cawley, P., Lowe, M.J.S.: The potential of guided waves for monitoring large areas of metallic aircraft fuselage structure. J. Nondestruct. Eval. 20, 29–46 (2001)

    Article  Google Scholar 

  12. Kundu, T.: Ultrasonic Nondestructive Evaluation: Engineering and Biological Material Characterization. CRC Press, Boca Raton (2003)

    Book  Google Scholar 

  13. Su, Z., Ye, L., Lu, Y.: Guided Lamb waves for identification of damage in composite structures: a review. J. Sound Vib. 295, 753–780 (2006)

    Article  Google Scholar 

  14. Sohn, H., Worden, K., Farrar, C.R.: Statistical damage classification under changing environmental and operational conditions. J. Intell. Mater. Syst. Struct. 13, 561 (2002)

    Article  Google Scholar 

  15. Rizzo, P., di Scalea, F.L.: Wavelet-based unsupervised and supervised learning algorithms for ultrasonic structural monitoring of waveguides. In: Progress in Smart Materials and Structures, p. 227 (2006)

    Google Scholar 

  16. Kessler, S.S., Spearing, S.M., Soutis, C.: Damage detection in composite materials using Lamb wave methods. Smart Mater. Struct. 11, 269–278 (2002)

    Article  Google Scholar 

  17. Younho, Cho: Estimation of ultrasonic guided wave mode conversion in a plate with thickness variation. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 591–603 (2000)

    Article  Google Scholar 

  18. Kim, S.B., Sohn, H.: Instantaneous reference-free crack detection based on polarization characteristics of piezoelectric materials. Smart Mater. Struct. 16, 2375–2387 (2007)

    Article  Google Scholar 

  19. Kim, S.B., Sohn, H.: Instantaneous crack detection using dual PZT transducers. In: Proceedings of SPIE, vol. 6935, pp. 09–12 (2008)

    Chapter  Google Scholar 

  20. Cegla, F.B., Rohde, A., Veidt, M.: Analytical prediction and experimental measurement for mode conversion and scattering of plate waves at non-symmetric circular blind holes in isotropic plates. Wave Motion 45, 162–177 (2008)

    Article  MathSciNet  Google Scholar 

  21. Alleyne, D.N., Cawley, P.: The interaction of Lamb waves with defects. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 381–397 (1992)

    Article  Google Scholar 

  22. Demma, A., Cawley, P., Lowe, M., Roosenbrand, A.G., Pavlakovic, B.: The reflection of guided waves from notches in pipes: a guide for interpreting corrosion measurements. NDT E Int. 37, 167–180 (2004)

    Article  Google Scholar 

  23. Lowe, M.J.S., Alleyne, D.N., Cawley, P.: The mode conversion of a guided wave by a part-circumferential notch in a pipe. J. Appl. Mech. 65, 649 (1998)

    Article  Google Scholar 

  24. Su, Z., Ye, L.: Selective generation of Lamb wave modes and their propagation characteristics in defective composite laminates. Proc. Inst. Mech. Eng. Part. L: J. Mater. Des. Appl. 218, 95–110 (2004)

    Google Scholar 

  25. Park, S., Lee, C., Sohn, H.: Reference-free crack detection using transfer impedances. J. Sound Vib. (2009)

  26. Sazonov, E.S., Klinkhachorn, P., Halabe, U.B., GangaRao, H.V.: Non-baseline detection of small damages from changes in strain energy mode shapes. Nondestr. Test. Eval. 18, 91–107 (2002)

    Article  Google Scholar 

  27. Anton, S.R., Inman, D.J., Park, G.: Reference-free damage detection using instantaneous baseline measurements. AIAA J. 47 (2009)

  28. Hillis, A.J., Neild, S.A., Drinkwater, B.W., Wilcox, P.D.: Global crack detection using bispectral analysis. Proc. R. Soc., Math. Phys. Eng. Sci. 462, 1515 (2006)

    Article  MATH  Google Scholar 

  29. Graff, K.F.: Wave Motion in Elastic Solids. Dover, New York (1991)

    Google Scholar 

  30. Cho, Y., Rose, J.L.: A boundary element solution for a mode conversion study on the edge reflection of Lamb waves. J. Acoust. Soc. Am. 99, 2097 (1996)

    Article  Google Scholar 

  31. Achenbach, J.D.: Reciprocity in Elastodynamics. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  32. Penrose, R.: A generalized inverse for matrices. In: Proc. Cambridge Philos. Soc., pp. 406–413 (1955)

    Google Scholar 

  33. Dosch, J.J., Inman, D.J., Garcia, E.: A self-sensing piezoelectric actuator for collocated control. J. Intell. Mater. Syst. Struct. 3, 166 (1992)

    Article  Google Scholar 

  34. Hagood, N.W., Chung, W.H., Von Flotow, A.: Modelling of piezoelectric actuator dynamics for active structural control. J. Intell. Mater. Syst. Struct. 1, 327 (1990)

    Article  Google Scholar 

  35. Lee, S.J., Sohn, H.: Active self-sensing scheme development for structural health monitoring. Smart Mater. Struct. 15, 1734–1746 (2006)

    Article  MathSciNet  Google Scholar 

  36. Giurgiutiu, V.: Structural Health Monitoring: With Piezoelectric Wafer Active Sensors. Academic Press, New York (2007)

    Google Scholar 

  37. Sohn, H.: Effects of environmental and operational variability on structural health monitoring. Philos. Trans. R. Soc., Math. Phys. Eng. Sci. 365, 539 (2007)

    Article  Google Scholar 

  38. Park, G., Kabeya, K., Cudney, H.H., Inman, D.J.: Impedance-based structural health monitoring for temperature varying applications. JSME Int. J. Ser. A 42, 249–258 (1999)

    Google Scholar 

  39. Fritzen, C.P., Mengelkamp, G., Guemes, A.: Elimination of temperature effects on damage detection within a smart structure concept. In: Structural Health Monitoring 2003: From Diagnostics & Prognostics to Structural Health Management: Proceedings of the 4th International Workshop on Structural Health Monitoring, Stanford University, Stanford, CA, September 15–17, 2003, pp. 1530–1538 (2003)

  40. Lu, Y., Michaels, J.E.: A methodology for structural health monitoring with diffuse ultrasonic waves in the presence of temperature variations. Ultrasonics 43, 717–731 (2005)

    Article  Google Scholar 

  41. Croxford, A.J., Wilcox, P.D., Drinkwater, B.W., Konstantinidis, G.: Strategies for guided-wave structural health monitoring. Proc. R. Soc., Math. Phys. Eng. Sci. 463, 2961 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debaditya Dutta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sohn, H., Dutta, D. & An, YK. Temperature Independent Damage Detection in Plates Using Redundant Signal Measurements. J Nondestruct Eval 30, 106–116 (2011). https://doi.org/10.1007/s10921-011-0096-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10921-011-0096-6

Keywords

Navigation