Skip to main content
Log in

Integrated Piezoelectric Ultrasonic Receivers for Laser Ultrasound in Non-destructive Testing of Metals

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Thick (>50 μm) piezoelectric films have been deposited directly on top of steel and aluminum substrates as integrated ultrasonic transducer (IUT) receivers to detect laser generated ultrasound. The film fabrication is based on a sol-gel spray technique. In this study IUTs intrinsically acting as bulk longitudinal wave receivers use various mode conversion approaches and serve as longitudinal, shear, symmetric, anti-symmetric and shear horizontal plate wave receivers. Different laser generation conditions such as point and line sources of different sizes are also applied to investigate the capabilities of IUT receivers. Ultrasonic measurements on metal substrates with planar and curved surfaces at temperature up to 400°C using laser generated and IUT ultrasound receiver are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. White, R.M.: Generation of elastic waves by transient surface heating. J. Appl. Phys. 34, 3559–3567 (1963)

    Article  Google Scholar 

  2. Scruby, C.B., Dewhurst, R.J., Hutchins, D.A., Palmer, S.B.: Laser generation of ultrasound in metals. In: Sharpe, R.S. (ed.) Res. Techniques in Nondestructrive Testing, vol. 5, pp. 281–327. Academic Press, San Diego (1982)

    Google Scholar 

  3. Hutchins, D.A.: Ultrasonic generation by pulsed lasers. In: Mason, W.P., Thurston, R.N. (eds.) Phys. Acoustics, vol. 18, pp. 21–123. Academic Press, San Diego (1988)

    Google Scholar 

  4. Adler, R., Korpel, A., Desmares, P.: An instrument for making surface waves visible. IEEE Trans. Sonics Ultrason. 15, 157–161 (1968)

    Google Scholar 

  5. Kessler, L.W., Palermo, P.R., Korpel, A.: Recent developments with the scanning laser acoustic microscope. In: Green, P.S. (ed.) Acoustic Holography, pp. 15–23. Plenum Press, New York (1974)

    Google Scholar 

  6. Monchalin, J.P.: Optical detection of ultrasound. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33, 485–499 (1986)

    Article  Google Scholar 

  7. Wagner, J.W.: Optical detection of ultrasound. In: Mason, W.P., Thurston, R.N. (eds.) Phys. Acoustics, vol. 19, pp. 201–264. Academic Press, San Diego (1990)

    Google Scholar 

  8. Ing, R.K., Monchalin, J.P.: Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal. Appl. Phys. Lett. 59, 3233–3235 (1991)

    Article  Google Scholar 

  9. Birks, A.S., Green, R.E. Jr., McIntire P.: Nondestructive Testing Handbook, 2nd edn. Ultrasonic Testing, ASNT, vol. 7. (1991)

  10. Gandhi, M.V., Thompson, B.S.: Smart Materials and Structures. Chapman & Hall, London (1992)

    Google Scholar 

  11. Lee, J.-R., Takatsubo, J., Toyama, N.: Disbond monitoring at wing stringer tip based on built-in ultrasonic transducers and a pulsed laser. Smart Mater. Struct. 16(4), 1025–1035 (2007)

    Article  Google Scholar 

  12. Lee, J.-R., Takatsubo, J., Toyama, N., Kang, D.-H.: Health monitoring of complex curved structures using an ultrasonic wavefield propagation imaging system. Meas. Sci. Technol. 18(12), 3816–3824 (2007)

    Article  Google Scholar 

  13. Yashiro, S., Takatsubo, J., Miyauchi, H., Toyama, N.: A novel technique for visualizing ultrasonic waves in general solid media by pulsed laser scan. NDT E Int. 41(2), 137–144 (2008)

    Article  Google Scholar 

  14. Chia, C.C., Lee, J.-R., Shin, H.-J.: Hot target inspection using a welded fibre acoustic wave piezoelectric sensor and a laser-ultrasonic mirror scanner. Meas. Sci. Technol. 20(12), 127003_1-8 (2009)

    Article  Google Scholar 

  15. Barrow, D.A., Petroff, T.E., Tandon, R.P., Sayer, M.: Characterization of thick lead zirconate titanate films fabricated using a new sol gel based process. J. Appl. Phys. 81(2), 876–881 (1997)

    Article  Google Scholar 

  16. Kobayashi, M., Jen, C.-K.: Piezoelectric thick bismuth titanate/PZT composite film transducers for smart NDE of metals. Smart Mater. Struct. 13(4), 951–956 (2004)

    Article  Google Scholar 

  17. Kobayashi, M., Jen, C.-K., Bussiere, J.F., Wu, K.-T.: High temperature integrated and flexible ultrasonic transducers for non-destructive testing. NDT E Int. 42(2), 157–161 (2009)

    Article  Google Scholar 

  18. Wu, K.-T., Kobayashi, M., Jen, C.-K.: Integrated high temperature piezoelectric plate acoustic wave transducers using mode conversion. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 1218–1224 (2009)

    Article  Google Scholar 

  19. Jen, C.-K., Ono, Y., Kobayashi, M.: High temperature integrated ultrasonic shear wave probes. Appl. Phys. Lett. 89, 183506_1-3 (2006)

    Google Scholar 

  20. Jen, C.-K., Wu, K.-T., Kobayashi, M., Kuo, J.-H., Mrad, N.: Integrated surface and plate acoustic wave sensors for health monitoring. Proc. SPIE Symp. Smart Struct. Mater. 6532, 6532061-8 (2007)

    Google Scholar 

  21. Walker, W.F., Trahey, G.E.: A fundamental limit on delay estimation using partially correlated speckle signals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42(2), 301–308 (1995)

    Article  Google Scholar 

  22. Aussel, J.-D., Monchalin, J.-P.: Precision laser-ultrasonic velocity measurement and elastic constant determination. Ultrasonics 27(3), 165–177 (1989)

    Article  Google Scholar 

  23. Kazys, R., Voleisis, A., Voleisiene, B.: High temperature ultrasonic transducers—review. Ultragarsas (Ultrasound) 63(2), 7–17 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.-K. Jen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, KT., Jen, CK., Kobayashi, M. et al. Integrated Piezoelectric Ultrasonic Receivers for Laser Ultrasound in Non-destructive Testing of Metals. J Nondestruct Eval 30, 1–8 (2011). https://doi.org/10.1007/s10921-010-0084-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10921-010-0084-2

Keywords

Navigation