Skip to main content

Advertisement

Log in

Segmentation and Diagnosis of Liver Carcinoma Based on Adaptive Scale-Kernel Fuzzy Clustering Model for CT Images

  • Image & Signal Processing
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Medical image analysis plays an important role in computer-aided liver-carcinoma diagnosis. Aiming at the existing image fuzzy clustering segmentation being not suitable to segment CT image with non-uniform background, a fast robust kernel space fuzzy clustering segmentation algorithm is proposed. Firstly, the sample in euclidean space is mapped into the high dimensional feature space through the kernel function. Then the linear weighted filtering image is obtained by combining the current pixel with its neighborhood pixels through the space information in CT image. Finally, the two-dimensional histogram between the clustered pixel and its neighborhood mean is introduced into the robust kernel space image fuzzy clustering, and the iterative expression of the fast robust fuzzy clustering in kernel space is obtained by using Lagrange multiplier method. The experimental results on four databases show that our proposed method can segment liver tumors from abdominal CT volumes effectively and automatically, and the comprehensive segmentation performance of the proposed method is superior to that of several existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Campadelli, P., Casiraghi, E., and Esposito, A., Liver segmentation from computed tomography scans: A survey and a new algorithm. Artif. Intell. Med. 45(2–3):185–196, 2009.

    Article  PubMed  Google Scholar 

  2. Tomoshige, S., Oost, E., Shimizu, A. et al., A conditional statistical shape model with integrated error estimation of the conditions; application to liver segmentation in non-contrast CT images. Med. Image Anal. 18(1):130–143, 2014.

    Article  PubMed  Google Scholar 

  3. Peng, J., Wang, Y., and Kong, D., Liver segmentation with constrained convex variational model. Pattern Recogn. Lett. 43(7):81–88, 2014.

    Article  Google Scholar 

  4. Qian, P., Jiang, Y., Deng, Z., Lingzhi, H., Sun, S., Wang, S., and Muzic, Jr., R. F., Cluster prototypes and fuzzy memberships jointly leveraged cross-domain maximum entropy clustering. IEEE Transactions on Cybernetics 46(1):181–193, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yang, H., and Zeng, J. H., A hierarchical local region-based sparse shape composition for liver segmentation in CT scans. Pattern Recogn. 50:88–106, 2016.

    Article  Google Scholar 

  6. Moghbel, M., Mashohor, S., Mahmud, R. et al., Review of liver segmentation and computer assisted detection/diagnosis methods in computed tomography. Artif. Intell. Rev., 2017.

  7. Norajitra, T., and Maier-Hein, K., 3D statistical shape models incorporating landmark-wise random regression forests for Omni-directional landmark detection. IEEE Trans. Med. Imaging 2016:1–1.

  8. Anca, C., Xavier, B., Olivier, C. et al., Semi-supervised segmentation of ultrasound images based on patch representation and continuous min cut. PLoS One 9(7):e100972, 2014.

    Article  CAS  Google Scholar 

  9. Thong, P., Abolmaesumi, P., and Hashtrudi-Zaad, K., Intra-subject elastic registration of 3D ultrasound images. Med. Image Anal. 10(5):713–725, 2006.

    Article  Google Scholar 

  10. Kang, X., Ren, H., Li, J. et al., Computer-assisted bone tumour ablation using sparse radiographs. Adv. Robot. 28(5):303–315, 2014.

    Article  Google Scholar 

  11. Wuttisarnwattana, P., Gargesha, M., Hof, W. V. et al., Automatic stem cell detection in microscopic whole mouse Cryo-imaging. IEEE Trans. Med. Imaging 35(3):819–829, 2016.

    Article  PubMed  Google Scholar 

  12. Liu, J., Wang, S., Linguraru, M. G. et al., Tumor sensitive matching flow: A variational method to detecting and segmenting perihepatic and perisplenic ovarian cancer metastases on contrast-enhanced abdominal CT. Med. Image Anal. 18(5):725–739, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hoogi, A., Subramaniam, A., Veerapaneni, R. et al., Adaptive estimation of active contour parameters using convolutional neural networks and texture analysis. IEEE Trans. Med. Imaging 36(3):781–791, 2017.

    Article  PubMed  Google Scholar 

  14. Zheng, Y., Ai, D., Zhang, P. et al., Feature learning based random walk for liver segmentation. PLoS One 11(11):e0164098, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Qian, P., Zhao, K., Jiang, Y., Su, K.-H., Deng, Z., Wang, S., and Muzic, Jr., R. F., Knowledge-leveraged transfer fuzzy c-means for texture image segmentation with self-adaptive cluster prototype matching. Knowl.-Based Syst. 130:33–50, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jiang, Y., Deng, Z., Chung, F.-L., Wang, G., Qian, P., Choi, K.-S., and Wang, S., Recognition of epileptic EEG signals using a novel multi-view TSK fuzzy system. IEEE Trans. Fuzzy Syst. 25(1):3–20, 2017.

    Article  Google Scholar 

  17. Xuesong, L., Qinlan, X., Yunfei, Z. et al., Fully automatic liver segmentation combining multi-dimensional graph cut with shape information in 3D CT images. Sci. Rep. 8(1):10700–10712, 2018.

    Article  CAS  Google Scholar 

  18. Mharib, A. M., Ramli, A. R., Mashohor, S. et al., Survey on liver CT image segmentation methods. Artif. Intell. Rev. 37(2):83–95, 2012.

    Article  Google Scholar 

  19. Xiaomeng, L., Hao, C., Xiaojuan, Q. et al., H-DenseUNet: Hybrid densely connected UNet for liver and tumor segmentation from CT volumes. IEEE Trans. Med. Imaging:1–1, 2018.

  20. Häme, Y., and Pollari, M., Semi-automatic liver tumor segmentation with hidden Markov measure field model and non-parametric distribution estimation. Med. Image Anal. 16(1):140–149, 2012.

    Article  PubMed  Google Scholar 

  21. Xia, K. J., Yin, H. S., and Wang, J. Q., A novel improved deep convolutional neural network model for medical image fusion. Clust. Comput. 28(3):1–13, 2018.

    Google Scholar 

  22. Chaieb, F., Ben Said, T., Mabrouk, S. et al., Accelerated liver tumor segmentation in four-phase computed tomography images. J. Real-Time Image Proc. 13(1):121–133, 2017.

    Article  Google Scholar 

  23. Vorontsov, E., Tang, A., Roy, D. et al., Metastatic liver tumour segmentation with a neural network-guided 3D deformable model. Med. Biol. Eng. Comput. 55(1):127–139, 2017.

    Article  PubMed  Google Scholar 

  24. Smeets, D., Loeckx, D., Stijnen, B. et al., Semi-automatic level set segmentation of liver tumors combining a spiral-scanning technique with supervised fuzzy pixel classification. Med. Image Anal. 14(1):13–20, 2010.

    Article  PubMed  Google Scholar 

  25. Sun, C., Guo, S., Zhang, H. et al., Automatic segmentation of liver tumors from multiphase contrast-enhanced CT images based on FCNs. Artif. Intell. Med.:S0933365716305930, 2017.

  26. Zygomalas, A., Karavias, D., Koutsouris, D. et al., Computer-assisted liver tumor surgery using a novel semiautomatic and a hybrid semiautomatic segmentation algorithm. Med. Biol. Eng. Comput. 54(5):711–721, 2016.

    Article  PubMed  Google Scholar 

  27. Xia, K.-j., Yin, H.-s., and Zhang, Y.-d., Deep semantic segmentation of kidney and space-occupying lesion area based on SCNN and ResNet models combined with SIFT-flow algorithm. J. Med. Syst. 43:2, 2019. https://doi.org/10.1007/s10916-018-1116-1.

    Article  Google Scholar 

  28. Ruskó, L., Bekes, G., and Fidrich, M., Automatic segmentation of the liver from multi- and single-phase contrast-enhanced CT images. Med. Image Anal. 13(6):871–882, 2009.

    Article  PubMed  Google Scholar 

  29. Lee, W. L., Chen, Y. C., Chen, Y. C. et al., Unsupervised segmentation of ultrasonic liver images by multiresolution fractal feature vector. Inf. Sci. 175(3):177–199, 2005.

    Article  Google Scholar 

  30. Hoogi, A., Beaulieu, C. F., Cunha, G. M. et al., Adaptive local window for level set segmentation of CT and MRI liver lesions. Med. Image Anal. 37(4):46–55, 2017.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kaijian Xia, Hongsheng Yin, Pengjiang Qian, Yizhang Jiang, Shuihua Wang, Liver Semantic Segmentation Algorithm Based on Improved Deep Adversarial Networks in Combination of Weighted Loss Function on Abdominal CT Images. IEEE Access 7: 96349-96358 ,2019

  32. Qian Zhao, Y., Hong Wang, X., Fang Wang, X. et al., Retinal vessels segmentation based on level set and region growing. Pattern Recogn. 47(7):2437–2446, 2014.

    Article  Google Scholar 

  33. Tang, Z., Wang, S., Huo, J., Guo, H., Zhao, H., and Mei, Y., Bayesian framework with non-local and low-rank constraint for image reconstruction. J. Phys. Conf. Ser. 787(787):1–11, 2017.

    Google Scholar 

  34. Wang, G., Zhang, S., Xie, H. et al., A homotopy-based sparse representation for fast and accurate shape prior modeling in liver surgical planning. Med. Image Anal. 19(1):176–186, 2015.

    Article  PubMed  Google Scholar 

  35. Qian, P., Jiang, Y., Wang, S., Su, K.-H., Wang, J., Hu, L., and Muzic, Jr., R. F., Affinity and penalty jointly constrained spectral clustering with all-compatibility, flexibility, and robustness. IEEE Transactions on Neural Networks and Learning Systems 28(5):1123–1138, 2017.

    Article  PubMed  Google Scholar 

  36. Jiang, Y., Chung, F.-L., Wang, S., Deng, Z., Wang, J., and Qian, P., Collaborative fuzzy clustering from multiple weighted views. IEEE Transactions on Cybernetics 45(4):688–701, 2015.

    Article  PubMed  Google Scholar 

  37. Jiang, Y., Chung, F.-L., Ishibuchi, H. et al., Multitask TSK fuzzy system modeling by mining intertask common hidden structure. IEEE Transactions on Cybernetics 45(3):548–561, 2015.

    Article  PubMed  Google Scholar 

  38. Kajian, X., Jiangqiang, W., and Yue, W., Robust Alzheimer disease classification based on feature integration fusion model for magnetic[J]. Journal of Journal of medical imaging and health informatics 24(7):1–6, 2017.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhong Cai.

Ethics declarations

Conflict of interest

Author declares that he has no conflict of interest.

Research involving human participants.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Image & Signal Processing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, J. Segmentation and Diagnosis of Liver Carcinoma Based on Adaptive Scale-Kernel Fuzzy Clustering Model for CT Images. J Med Syst 43, 322 (2019). https://doi.org/10.1007/s10916-019-1459-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-019-1459-2

Keywords

Navigation