Skip to main content

Advertisement

Log in

Neural Network Classifier with Entropy Based Feature Selection on Breast Cancer Diagnosis

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

The aim of this research is to combine the feature selection (FS) and optimization algorithms as the optimal tool to improve the learning performance like predictive accuracy of the Wisconsin Breast Cancer Dataset classification. An ensemble of the reduced data patterns based on FS was used to train a neural network (NN) using the Levenberg–Marquardt (LM) and the Particle Swarm Optimization (PSO) algorithms to devise the appropriate NN training weighting parameters, and then construct an effective Neural Network classifier to improve the Wisconsin Breast Cancers’ classification accuracy and efficiency. Experimental results show that the accuracy and AROC improved emphatically, and the best performance in accuracy and AROC are 98.83% and 0.9971, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Braha, D., and Shmilovici, A., Data mining for improving a cleaning process in the semiconductor industry. IEEE T. Semiconduct. M. 15(1):91–101, 2002. doi:10.1109/66.983448.

    Article  Google Scholar 

  2. Dash, M., and Liu, H., Feature selection for classifications. Intell. Data Anal. 1(1–4):131–156, 1997. doi:10.1016/S1088-467X(97)00008-5.

    Article  Google Scholar 

  3. Blum, A. L., and Langley, P., Selection of relevant features and examples in machine learning. Artif. Intell. 97:245–271, 1997. doi:10.1016/S0004-3702(97)00063-5.

    Article  MathSciNet  MATH  Google Scholar 

  4. Pattaraintakorna, P., Cerconeb, N., and Naruedomkula, K., Rule learning: Ordinal prediction based on rough sets and soft-computing. Appl. Math. Lett. 19:1300–1307, 2006. doi:10.1016/j.aml.2005.08.004.

    Article  MathSciNet  Google Scholar 

  5. Xing, E. P., Jordan, M. I., and Karp, R. M., Feature selection for high-dimensional genomic microarray data, in: Proc. of the 18th International Conference on Machine Learning, pp. 601–608, 2001.

  6. Yang, Y., and Pederson, J. O., A comparative study on feature selection in text categorization in: Proc. of the 14th International Conference on Machine Learning, pp. 412–420, 1997.

  7. Rui, Y., Huang, T. S., and Chang, S., Image retrieval: Current techniques, promising directions and open issues. J. Vis. Commun. Image R. 10:39–62, 1999. doi:10.1006/jvci.1999.0413.

    Article  Google Scholar 

  8. Ng, K., and Liu, H., Customer retention via data mining. Artif. Intell. Rev. 14(6):569–590, 2000. doi:10.1023/A:1006676015154.

    Article  MATH  Google Scholar 

  9. Hamilton, H. J., Shan, N., and Cercone, N., RIAC: A rule induction algorithm based on approximate classification. Technical Report. CS 96–06, University of Regina, 1996.

  10. Ster, B., Dobnikar, A., et al., Neural networks in medical diagnosis: Comparison with other methods, in Proc. Int. Conf. EANN'96, A. Bulsari, Ed., pp. 427–430, 1996.

  11. Bennett, K. P., and Blue, J. A., A support vector machine approach to decision trees, in Neural Networks Proceedings, vol. 3, pp. 2396–2401, 1998.

  12. Nauck, D., and Kruse, R., Obtaining interpretable fuzzy classification rules from medical data. Artif. Intell. Med. 16(2):149–169, 1999. doi:10.1016/S0933-3657(98)00070-0.

    Article  MathSciNet  Google Scholar 

  13. Mangasarian, O. L., and Wolberg, W. H., Cancer diagnosis via linear programming. Soc. Ind. Appl. Math. 23(5):1–18, 1990.

    Google Scholar 

  14. Penna-Reyes, C. A., and Sipper, M., A fuzzy-genetic approach to breast cancer diagnosis. Artif. Intell. Med. 17(2):131–155, 1999. doi:10.1016/S0933-3657(99)00019-6.

    Article  Google Scholar 

  15. Setiono, R., Generating concise and accurate classification rules for breast cancer diagnosis. Artif. Intell. Med. 18(3):205–219, 2000. doi:10.1016/S0933-3657(99)00041-X.

    Article  Google Scholar 

  16. Goodman, D. E., Boggess, L. C., and Watkins, A. B., Artificial immune system classification of multiple-class problems, in The proc. of the artificial neural networks in engineering ANNIE, pp. 179–183, 2002.

  17. Abonyi, J., and Szeifert, F., Supervised fuzzy clustering for the identification of fuzzy classifiers. Pattern Recognit. Lett. 24(14):2195–2207, 2003. doi:10.1016/S0167-8655(03)00047-3.

    Article  MATH  Google Scholar 

  18. John, G. H., Kohavi, R., and Pfleger, K., Irrelevant features and the subset selection problem. in Machine Learning: in: Proc. of the 11th International Conference (ICML’94), San Mateo, CA: Morgan Kaufmann, pp.121–129, 1994.

  19. Daintith, J., Oxford Dictionary of Physics. Oxford University Press, Oxford, 2005.

    Google Scholar 

  20. Clausius, R., Über die Wärmeleitung gasförmiger Körper. Annalen Phys. 125:353–400, 1865.

    Google Scholar 

  21. Clausius, R., The Mechanical Theory of Heat—with its Applications to the Steam Engine and to Physical Properties of Bodies, London: John van Voorst, 1 Paternoster Row. MDCCCLXVII, 1865.

  22. Roger, B., Entropy—Protean Concept (PDF), Poincaré Seminar 2, Institut Henri Poincaré, pp. 119–144, Paris, France 38, Birkhäuser Verlag, Basel, 2003.

  23. Lee, T. F., Cho, M. Y., and Shieh, C. H., Precise segmentation rendering for medical images based om maximum entropy processing. Lect. Notes Artif. Intell. 3683:366–373, 2005.

    Google Scholar 

  24. Abasolo, D., Hornero, R., Espino, P., Alonso, A., and de la Rosa, R., Electroencephalogram Analysis with Approimate Entropy to Help in The Diagnosis of Alzheimer’s Disease, in: Proc of the 4th Annual IEEE Conference on Information Technology Applications in Biomedicine, UK, pp. 222–225, 2003.

  25. Liu, H., and Setiono, R., Some issues on scalable feature selection. Expert Syst. Appl. 15:333–339, 1998. doi:10.1016/S0957-4174(98)90049-5.

    Article  Google Scholar 

  26. Hassaniena, A. E., and Ślęzakc, D., Rough neural intelligent approach for image classification: A case of patients with suspected breast cancer. Int. J. Hybrid Intell. Syst. 3:205–218, 2006.

    Google Scholar 

  27. Chaudhuri, B. B., and Bhattacharya, U., Efficient training and improved performance of multilayer perceptron in pattern classification. Neurocomputing. 34:11–27, 2000. doi:10.1016/S0925-2312(00)00305-2.

    Article  MATH  Google Scholar 

  28. Kermani, B. G., Schiffman, S. S., and Nagle, H. T., Using neural networks and genetic algorithms to enhance performance in an electronic nose. IEEE T. Biomed. Eng. (N.Y.). 46(4):429–439, 1999.

    Article  Google Scholar 

  29. Jerez-Aragonés, J. M., Gómez-Ruiz, J. A., Ramos-Jiménez, G., Muñoz-Pérez, J., and Alba-Conejo, E., A combined neural network and decision trees model for prognosis of breast cancer relapse. Artif. Intell. Med. 27(1):45–63, 2003. doi:10.1016/S0933-3657(02)00086-6.

    Article  Google Scholar 

  30. Goa, D., On structures of supervised linear basis function feedforwrd three-layered neural networks. Chin. J. Comput. 21(1):80–86, 1998.

    Google Scholar 

  31. Swets, J. A., Measuring the accuracy of diagnostic systems. Science. 240(4857):1285–1293, 1988. doi:10.1126/science.3287615.

    Article  MathSciNet  Google Scholar 

  32. Swets, J. A., and Pickett, R. M., Evaluation of diagnostic systems: Methods from signal detection theory. Academic, New York, 1992.

    Google Scholar 

  33. Bradley, A. P., The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit. 30(7):1145–1159, 1997. doi:10.1016/S0031-3203(96)00142-2.

    Article  Google Scholar 

  34. Delen, D., Walker, G., and Kadam, A., Predicting breast cancer survivability: a comparison of three data mining methods. Artif. Intell. Med. 34(2):113–127, 2005. doi:10.1016/j.artmed.2004.07.002.

    Article  Google Scholar 

  35. Quinlan, J. R., Improved use of continuous attributes in C4.5. J. Artif. Intell. Res. 4:77–90, 1996.

    MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their careful reading of the paper and for making several suggestions that improved it. The authors would also like to thank the National Science Council of the Republic of China for financially supporting this research under contract NSC 96-2221-E-167-001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yung-Hsiang Hung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, ML., Hung, YH. & Chen, WY. Neural Network Classifier with Entropy Based Feature Selection on Breast Cancer Diagnosis. J Med Syst 34, 865–873 (2010). https://doi.org/10.1007/s10916-009-9301-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-009-9301-x

Keywords

Navigation