Skip to main content

Advertisement

Log in

Classification of Emg Signals Using Neuro-Fuzzy System and Diagnosis of Neuromuscular Diseases

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

This work investigates the performance of neuro-fuzzy system for analyzing and classifying EMG signals recorded from normal, neuropathy, and myopathy subjects. EMG signals were obtained from 177 subjects, 60 of them had suffered from neuropathy disorder, 60 of them had suffered from myopathy disorder, and rest of them had been normal. Coefficients that were obtained from the EMG signals using Autoregressive (AR) analysis was applied to neuro-fuzzy system. The classification performance of the feature sets was investigated for three classes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Basmajian, J., and De Luca, C. J., Muscles alive. Williams&Wilkins, Baltimore, 1985.

    Google Scholar 

  2. Deluca, C. J., Towards understanding the EMG signal ch 3 of muscles alive, fourth edition. Williams&Wilkonson, Bultimore, 1978.

    Google Scholar 

  3. Stalberg, E., Andreassen, S., Falck, B., Lang, H., Rosenfalck, A., and Trojaborg, W., Quantitative analysis of individual motor unit potentials: a proposition for standardized terminology f1and criteria for measurement. Journal of Clinical Neurophysiology. 3:4313–348, 1986.

    Article  Google Scholar 

  4. Cadzow, J. A. (1982). ARMA modeling of time series, IEEE Transactions on Pattern Analysis and Machine Intelligence.

  5. Marple, S. L., Digital Spectral analysis with application. Prentice-Hall, Englewood Cliffs, NJ, 1987.

    Google Scholar 

  6. Graupe, D., and Cline, W. K., Functional Separation of EMG Signals via ARMA Identification Methods for Prosthetic Control Purposes. IEEE Transactions on Systems, Man, and Cybernetics. 5:252–259, 1975.

    Google Scholar 

  7. Coatrieux, J. L., Interference electromyogram processing—Part II: experimental and simulated EMG AR modeling. Electromyography Clinical Neurophysiologie. 23:481–490, 1983.

    Google Scholar 

  8. Maranzana, M. F., Molinari, R., and Somma-Riva, G., The parametrization of the electromyographic signal: an approach based on simulated EMG signals. Electromyography Clinical Neurophysiologie. 24:47–65, 1984.

    Google Scholar 

  9. Basmajian, J. V. et al. (1985). Electrodiagnostic Model for Motor Unit Action Potential (MUAP) Generation, American Journal of Physical Medicine, 64(6).

  10. Kang, W. J., Shiu, J. R., Cheng, C. K., Lai, J. S., Tsao, H. W., and Kuo, T. S., The application of cepstral coefficients and maximum likelihood method in EMG pattern recognition. IEEE Transactions on Biomedical Engineering. 42:8777–785, 1995. doi:10.1109/10.398638.

    Article  Google Scholar 

  11. Abel, E. W., Zacharia, P. C., Forster, A., and Farrow, T. L., Farrow, neural network analysis of the EMG interference pattern. Medical engineering and physics. 18:12–17, 1996. doi:10.1016/1350-4533(95)00032-1.

    Article  Google Scholar 

  12. Savelberg, H. H., and Herzog, W., Prediction of dynamic tendon forces from electromyographic signals: an artificial neural network approach. Journal of Neuroscience Methods. 30;78:1–265–74, 1997.

    Article  Google Scholar 

  13. Kumaravel, N., and Kavitha, V., Automatic diagnosis of neuro-muscular diseases using neural network. Biomedical sciences instrumentation. 30:245–250, 1994.

    Google Scholar 

  14. Pattichis, C. S., and Elia, G. A., Autoregressive and cepstral analysis the motor unit potential. Medical engineering and physics. 21:405–419, 1999. doi:10.1016/S1350-4533(99)00072-7.

    Article  Google Scholar 

  15. Nussbaum, M. A., Martin, B. J., and Chaffin, D. B., A neural network model for simulation of torso muscle coordination. Journal of Biomechanics. 30:3251–258, 1997. doi:10.1016/S0021-9290(96)00138-8.

    Article  Google Scholar 

  16. Hiraiwa, A., Shimohara, K., Tokunaga, Y. (1989). EMG Pattern Analysis and Classification by Neural Network. Proceedings of the IEEE International Conference on Systems,Man and Cybernetics. pp. 1113–1115.

  17. Farry, K. A., and Walker, I. D., Myoelectric teleoperation of a complex robotic hand. IEEE Transactions on Robotics and Automation. 12:5775–788, 1996. doi:10.1109/70.538982.

    Article  Google Scholar 

  18. Sarbadhikari, S. N., A neural network confirms that physical exercise reverses EEG changes in depressed rats. Medical engineering and physics. 17:18579–582, 1995.

    Article  Google Scholar 

  19. Kellner, B., Stief, C. G., Hinrichs, H., and Hartung, C., Computerized classification of corpus cavernosum EMG signals by use of discrimant analysis and ANN to support diagnosis of erectile dysfunction. Urological research. 28:6–13, 2000. doi:10.1007/s002400050002.

    Article  Google Scholar 

  20. Güler N. F., Koçer S. (2005). Classification of EMG Signals Using PCA and FFT. Journal of Medical Systems, 29(3), (June 2005).

  21. Güler N. F., Koçer S (2005). Use of Support Vector Machines and Neural Network in Diagnosis of Neuromuscular Disorders, Journal of Medical Systems, 29(3), (June 2005).

  22. Nauck, D., and Kruse, R., A neuro-fuzzy method to learn fuzzy classification rules from data. Fuzzy sets and systems. 89:277–288, 1997. doi:10.1016/S0165-0114(97)00009-2.

    Article  MathSciNet  Google Scholar 

  23. Nauck, D., and Kruse, R., Obtaining interpretable fuzzy classification rules from medical data. Artificial intelligence in medicine. 16:149–169, 1999. doi:10.1016/S0933-3657(98)00070-0.

    Article  Google Scholar 

  24. Şeker, H., Evans, D. H., Aydin, N., and Yazgan, E., Compensatory fuzzy neural Networks-based intelligent detection of abnormal neonatal cerebral Doppler ultrasound waveforms. IEEE transactions on information technology in biomedicine. 5:3187–194, 2001. doi:10.1109/4233.945289.

    Article  Google Scholar 

  25. Guler, İ., Hardalaç, F., and Barisci, N., Application of FFT analyzed cardiac doppler signals to fuzzy algorithm. Computers in biology and medicine. 32:435–444, 2002. doi:10.1016/S0010-4825(02)00021-5.

    Article  Google Scholar 

  26. Szabo, B., Szabo, R., Shankar, R., Urso, A, & Kolluri, S. (1990). A Data Acquisition and Signal Processing System for EMG and Acceleration Signals, IEEE Southeastcon, New Orleans, (April 1990).

  27. Proakis, J. G., and Manolakis, D. G., Digital Signal Processing-Principles, Algorithms, and Applications. Prentice-Hall, Upper Saddle River, NJ, 1996.

    Google Scholar 

  28. Burg, J. P., Maximum entropy spectral analysis. Proceedings of the 37th Meeting of the Society of Exploration Geophysicists, Oklahoma City, 1967. In: ChilderD. G. (Ed.), Modern spectrum analysisIEEE, New York, 1967.

    Google Scholar 

  29. Kay, S. M., Maximum entropy spectral estimation using the analytical signal. IEEE Transactions on Acoustics Speech Signal Processing. 26:467–469, 1978. doi:10.1109/TASSP.1978.1163127.

    Article  Google Scholar 

  30. Pardey, J., Roberts, S. & Tarassenko L. A review of parametric modeling techniques for EEG analysis.

  31. Akaike, H., A new look at the statistical model identification. IEEE Transactions Automatic Control. 19:716–723, 1974. doi:10.1109/TAC.1974.1100705.

    Article  MATH  MathSciNet  Google Scholar 

  32. Nauck, D., Klawonn, F., and Kruse, R., Foundations of Neuro-Fuzzy systems. Wiley, Chichester, 1997.

    Google Scholar 

  33. Nauck, D., Kruse, R. (1997). What are Neuro-Fuzzy Classifiers, Proc. Seventh International Fuzzy Systems Association World Congress IFSA’97, 4:228–233, Academia Prague.

  34. Buckley, J. J., and Hayashi, Y., Fuzzy neural networks: a survey. Fuzzy sets and systems. 66:1–13, 1994. doi:10.1016/0165-0114(94)90297-6.

    Article  MathSciNet  Google Scholar 

  35. Nauck, D., and Kruse, R., NEFCLASS-a neuro -fuzzy approach for the classification of data, Proc. 1995 ACM Symposium on Applied Computing, Nashville. ACM, New York, pp. 461–465, 1995.

    Google Scholar 

  36. Nauck, D., Nauck, U., Kruse, R. (1996). Generating classification rules with the neuro-fuzzy system NEFCLASS, Proc. Biennial Conference of the North American Fuzzy Information Processing Society NAFIPS’96, Berkeley, CA.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabri Koçer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koçer, S. Classification of Emg Signals Using Neuro-Fuzzy System and Diagnosis of Neuromuscular Diseases. J Med Syst 34, 321–329 (2010). https://doi.org/10.1007/s10916-008-9244-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-008-9244-7

Keywords

Navigation