Skip to main content

Advertisement

Log in

Energy-Conserved Splitting Multidomain Legendre-Tau Spectral Method for Two Dimensional Maxwell’s Equations

  • Original Research
  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, the energy-conserved splitting multidomain Legendre-tau Chebyshev-collocation spectral method is proposed for solving two dimensional Maxwell’s equations. The method uses different degree polynomials to approximate the electric and magnetic fields respectively, and they can be decoupled in computation. Moreover, the error estimates are improved to the optimal order. In semi-discrete scheme, we apply the multidomain Legendre-tau Chebyshev-collocation spectral method. In fully discrete scheme, we use the energy-conserved splitting method in time step. The optimal error estimate is obtained for the homogeneous media. The multidomain spectral method is also applied to solve Maxwell’s equations with discontinuous solutions. Numerical results indicate that the spectral accuracy is not affected by the discontinuity of solutions. With the multidomain method, the computation can be implemented in parallel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Yee, K.S.: Numerical solution of initial boundary value problems involving Maxwells equations in isotropic media. IEEE Trans. Antennas Propag. 14(3), 302–307 (1966)

    Article  Google Scholar 

  2. Douglas, P.D.J.: Numerical solution of two-dimensional heat flow problems. Am. Inst. Chem. Eng. J. 1, 505–512 (1955)

    Article  Google Scholar 

  3. Douglas, J., Jr., Rachford, H.H., Jr.: On the numerical solution of heat conduction problems in two and three space variables. Trans. Am. Math. Soc. 82, 421–439 (1956). https://doi.org/10.2307/1993056

    Article  MathSciNet  MATH  Google Scholar 

  4. Namiki, T.: A new FDTD algorithm based on alternating direction implicit method. IEEE Trans. Microwave Theory Tech. 47, 2003–2007 (1999)

    Article  Google Scholar 

  5. Zhang, C.Z.F.: Numerical dispersion analysis of the unconditionally stable ADI-FDTD method. IEEE Trans. Microwave Theory Tech. 49, 1006–1009 (2000)

    Article  Google Scholar 

  6. Gao, L., Zhang, B., Liang, D.: The splitting finite-difference time-domain methods for Maxwells equations in two dimensions. J. Comput. Appl. Math. 205(1), 207–230 (2007). https://doi.org/10.1016/j.cam.2006.04.051

    Article  MathSciNet  MATH  Google Scholar 

  7. Li, W., Zhang, Y., Wong, Y.S., Liang, D.: ADI-FDTD method for two-dimensional transient electromagnetic problems. Commun. Comput. Phys. 19(1), 94–123 (2016). https://doi.org/10.4208/cicp.160914.270315a

    Article  MathSciNet  MATH  Google Scholar 

  8. Hesthaven, J. S., Warburton, T.: Nodal high-order methods on unstructured grids. I. Time-domain solution of Maxwell’s equations, J. Comput. Phys. 181 (1) 186–221. (2002). https://doi.org/10.1006/jcph.2002.7118

  9. Cockburn, B., Li, F., Shu, C.-W.: Locally divergence-free discontinuous Galerkin methods for the Maxwell equations. J. Comput. Phys. 194(2), 588–610 (2004). https://doi.org/10.1016/j.jcp.2003.09.007

    Article  MathSciNet  MATH  Google Scholar 

  10. Rieben, R.G.W.D.R.N.: A high order mixed vector finite element method for solving the time dependent Maxwell equations on unstructured grids. J. Comput. Phys. 204, 490–519 (2005)

    Article  Google Scholar 

  11. Descombes, S., Lanteri, S., Moya, L.: Locally implicit discontinuous Galerkin time domain method for electromagnetic wave propagation in dispersive media applied to numerical dosimetry in biological tissues. SIAM J. Sci. Comput. 38(5), A2611–A2633 (2016). https://doi.org/10.1137/15M1010282

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, J., Shi, C., Shu, C.-W.: Optimal non-dissipative discontinuous Galerkin methods for Maxwells equations in Drude metamaterials. Comput. Math. Appl. 73(8), 1760–1780 (2017). https://doi.org/10.1016/j.camwa.2017.02.018

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, W., Li, X., Liang, D.: Energy-conserved splitting FDTD methods for Maxwells equations. Numer. Math. 108(3), 445–485 (2008). https://doi.org/10.1007/s00211-007-0123-9

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, W., Li, X., Liang, D.: Energy-conserved splitting finite-difference time-domain methods for Maxwells equations in three dimensions. SIAM J. Numer. Anal. 48(4), 1530–1554 (2010). https://doi.org/10.1137/090765857

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, W., Liang, D.: Analysis of the energy-conserved S-FDTD scheme for variable coefficient Maxwells equations in disk domains. Math. Methods Appl. Sci. 39(7), 1689–1704 (2016). https://doi.org/10.1002/mma.3596

    Article  MathSciNet  MATH  Google Scholar 

  16. Zeng, F., Ma, H., Liang, D.: Energy-conserved splitting spectral methods for two dimensional Maxwells equations. J. Comput. Appl. Math. 265, 301–321 (2014). https://doi.org/10.1016/j.cam.2013.09.048

    Article  MathSciNet  MATH  Google Scholar 

  17. Shi, Y., Li, L., Liang, C.-H.: Two dimensional multidomain pseudospectral time-domain algorithm based on alternating-direction implicit method. IEEE Trans. Antennas Propag. 54(4), 1207–1214 (2006). https://doi.org/10.1109/TAP.2006.872591

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, H., Ma, H., Sun, W.: Legendre spectral Galerkin method for electromagnetic scattering from large cavities. SIAM J. Numer. Anal. 51(1), 353–376 (2013). https://doi.org/10.1137/110833853

    Article  MathSciNet  MATH  Google Scholar 

  19. Ma, H., Qin, Y., Ou, Q.: Multidomain Legendre–Galerkin Chebyshev-collocation method for one-dimensional evolution equations with discontinuity. Appl. Numer. Math. 111, 246–259 (2017). https://doi.org/10.1016/j.apnum.2016.09.010

    Article  MathSciNet  MATH  Google Scholar 

  20. Ma, L., Shen, J., Wang, L.-L., Yang, Z.: Wavenumber explicit analysis for time-harmonic Maxwell equations in a spherical shell and spectral approximations. IMA J. Numer. Anal. 38(2), 810–851 (2018). https://doi.org/10.1093/imanum/drx014

    Article  MathSciNet  MATH  Google Scholar 

  21. Quarteroni, A.: Domain decomposition methods for systems of conservation laws: spectral collocation approximations. SIAM J. Sci. Statist. Comput. 11(6), 1029–1052 (1990). https://doi.org/10.1137/0911058

    Article  MathSciNet  MATH  Google Scholar 

  22. Yang, B., Hesthaven, J. S.: Multidomain pseudospectral computation of Maxwell’s equations in 3-D general curvilinear coordinates. In: Proceedings of the Fourth International Conference on Spectral and High Order Methods (ICOSAHOM 1998) (Herzliya), Vol. 33, pp. 281–289. (2000) https://doi.org/10.1016/S0168-9274(99)00094-X

  23. Vay, J.-L., Haber, I., Godfrey, B.B.: A domain decomposition method for pseudo-spectral electromagnetic simulations of plasmas. J. Comput. Phys. 243, 260–268 (2013). https://doi.org/10.1016/j.jcp.2013.03.010

    Article  MathSciNet  MATH  Google Scholar 

  24. El Bouajaji, M., Thierry, B., Antoine, X., Geuzaine, C.: A quasi-optimal domain decomposition algorithm for the time-harmonic Maxwells equations. J. Comput. Phys. 294, 38–57 (2015). https://doi.org/10.1016/j.jcp.2015.03.041

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhao, R., Huang, Z.X., Chen, Y.P., Hu, J.: Solving electromagnetic scattering from complex composite objects with domain decomposition method based on hybrid surface integral equations. Eng. Anal. Bound. Elem. 85, 99–104 (2017). https://doi.org/10.1016/j.enganabound.2017.09.014

    Article  MathSciNet  MATH  Google Scholar 

  26. Yefet, A., Petropoulos, P.G.: A staggered fourth-order accurate explicit finite differences scheme for the time-domain Maxwells equations. J. Comput. Phys. 168(2), 286–315 (2001). https://doi.org/10.1006/jcph.2001.6691

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhao, S., Wei, G.W.: High-order FDTD methods via derivative matching for Maxwells equations with material interfaces. J. Comput. Phys. 200(1), 60–103 (2004). https://doi.org/10.1016/j.jcp.2004.03.008

    Article  MathSciNet  MATH  Google Scholar 

  28. Nguyen, D.D., Zhao, S.: Time-domain matched interface and boundary (MIB) modeling of Debye dispersive media with curved interfaces. J. Comput. Phys. 278, 298–325 (2014). https://doi.org/10.1016/j.jcp.2014.08.038

    Article  MathSciNet  MATH  Google Scholar 

  29. Shen, J., Tang, T., Wang, L.-L.: Spectral methods, Vol. 41 of Springer Series in Computational Mathematics, Springer, Heidelberg, algorithms, analysis and applications. (2011) https://doi.org/10.1007/978-3-540-71041-7

  30. Bernardi, C., Maday, Y.: Spectral methods. In: Handbook of numerical analysis, Vol. V, Handb. Numer. Anal., V, North-Holland, Amsterdam, pp. 209–485. (1997) https://doi.org/10.1016/S1570-8659(97)80003-8

Download references

Acknowledgements

Heping Ma’s and Cuixia Niu’s works were supported by the NSF of China(11971016). Dong Liang’s work was supported partially by Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heping Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, C., Ma, H. & Liang, D. Energy-Conserved Splitting Multidomain Legendre-Tau Spectral Method for Two Dimensional Maxwell’s Equations. J Sci Comput 90, 77 (2022). https://doi.org/10.1007/s10915-021-01744-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01744-0

Keywords

Navigation