Abstract
In this paper, we propose a new finite difference weighted essentially non-oscillatory (WENO) scheme for nonlinear degenerate parabolic equations which may contain non-smooth solutions. An alternative formulation is designed to approximate the second derivatives in a conservative form. In this formulation, the odd order derivatives at half points are used to construct the numerical flux, instead of the usual practice of reconstruction. Moreover, the multi-resolution WENO scheme is designed to circumvent the negative ideal weights and mapped nonlinear weights that appear when applying the standard WENO idea. We will describe the scheme formulation and present numerical tests for one- and two-dimensional, demonstrating the designed high order accuracy and non-oscillatory performance of the schemes constructed in this paper.











Similar content being viewed by others
References
Abedian, R., Adibi, H., Dehghan, M.: A high-order weighted essentially non-oscillatory (WENO) finite difference scheme for nonlinear degenerate parabolic equations. Comput. Phys. Commun. 184(8), 1874–1888 (2013)
Alt, H.W., Luckhaus, S.: Quasilinear elliptic-parabolic differential equations. Math. Z. 183(3), 311–341 (1983)
Arbogast, T., Huang, C.-S., Zhao, X.: Finite volume weno schemes for nonlinear parabolic problems with degenerate diffusion on non-uniform meshes. J. Comput. Phys. 399, 108921 (2019)
Aregba-Driollet, D., Natalini, R., Tang, S.: Explicit diffusive kinetic schemes for nonlinear degenerate parabolic systems. Math. Comput. 73(245), 63–94 (2004)
Aronson, D. G.: The porous medium equation. In Nonlinear diffusion problems, pp. 1–46. Springer, Berlin (1986)
Balsara, D.S., Shu, C.-W.: Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. 160(2), 405–452 (2000)
Barenblatt, G.I.: On self-similar motions of a compressible fluid in a porous medium. Akad. Nauk SSSR. Prikl. Mat. Meh 16(6), 79–6 (1952)
Berger, A.E., Brezis, H., Rogers, J.C.: A numerical method for solving the problem \(u_t-\Delta f(u)=0\). RAIRO. Anal. Numér. 13(4), 297–312 (1979)
Bessemoulin-Chatard, M., Filbet, F.: A finite volume scheme for nonlinear degenerate parabolic equations. SIAM J. Sci. Comput. 34(5), B559–B583 (2012)
Buckley, S.E., Leverett, M., et al.: Mechanism of fluid displacement in sands. Trans. AIME 146(01), 107–116 (1942)
Cavalli, F., Naldi, G., Puppo, G., Semplice, M.: High-order relaxation schemes for nonlinear degenerate diffusion problems. SIAM J. Numer. Anal. 45(5), 2098–2119 (2007)
Christlieb, A., Guo, W., Jiang, Y., Yang, H.: Kernel based high order explicit unconditionally stable scheme for nonlinear degenerate advection-diffusion equations. J. Sci. Comput. 82(3), 52 (2020)
Duyn, C.Y., Peletier, L.: Nonstationary filtration in partially saturated porous media. Arch. Ration. Mech. Anal. 78(2), 173–198 (1982)
Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)
Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted eno schemes. J. Comput. Phys. 126(1), 202–228 (1996)
Jiang, Y., Shu, C.-W., Zhang, M.: An alternative formulation of finite difference weighted ENO schemes with lax-wendroff time discretization for conservation laws. SIAM J. Sci. Comput. 35(2), A1137–A1160 (2013)
Jiang, Y., Shu, C.-W., Zhang, M.: Free-stream preserving finite difference schemes on curvilinear meshes. Methods Appl. Anal. 21(1), 1–30 (2014)
Kurganov, A., Tadmor, E.: New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 160(1), 241–282 (2000)
Levy, D., Puppo, G., Russo, G.: Compact central weno schemes for multidimensional conservation laws. SIAM J. Sci. Comput. 22(2), 656–672 (2000)
Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115(1), 200–212 (1994)
Liu, Y., Shu, C.-W., Zhang, M.: On the positivity of linear weights in WENO approximations. Acta Math. Appl. Sin. Engl. Ser. 25(3), 503–538 (2009)
Liu, Y., Shu, C.-W., Zhang, M.: High order finite difference WENO schemes for nonlinear degenerate parabolic equations. SIAM J. Sci. Comput. 33(2), 939–965 (2011)
Lu, Y., Jger, W.: On solutions to nonlinear reactiondiffusionconvection equations with degenerate diffusion. J. Differ. Equ. 170(1), 1–21 (2001)
Magenes, E., Nochetto, R., Verdi, C.: Energy error estimates for a linear scheme to approximate nonlinear parabolic problems. ESAIM Math. Modell. Numer. Anal. Modél. Math. Anal. Numér. 21(4), 655–678 (1987)
Muskat, M., Wyckoff, R. D. et al.: Flow of homogeneous fluids through porous media. (1937)
Nochetto, R., Schmidt, A., Verdi, C.: A posteriori error estimation and adaptivity for degenerate parabolic problems. Math. Comput. 69(229), 1–24 (2000)
Nochetto, R.H., Verdi, C.: Approximation of degenerate parabolic problems using numerical integration. SIAM J. Numer. Anal. 25(4), 784–814 (1988)
Otto, F.: L1-contraction and uniqueness for quasilinear elliptic-parabolic equations. J. Differ. Equ. 131(1), 20–38 (1996)
Shu, C.-W.: High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Rev. 51(1), 82–126 (2009)
Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)
Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. II. J. Comput. Phys. 83(1), 32–78 (1989)
Wang, Y., Zhu, J.: A new type of increasingly high-order multi-resolution trigonometric weno schemes for hyperbolic conservation laws and highly oscillatory problems. Computers and Fluids, p. 104448 (2020)
Zeldovich, Y. B., Kompaneets, A.: Towards a theory of heat conduction with thermal conductivity depending on the temperature. Collection of papers dedicated to 70th birthday of Academician AF Ioffe, Izd. Akad. Nauk SSSR, Moscow, pp. 61–71 (1950)
Zhang, Q., Wu, Z.-L.: Numerical simulation for porous medium equation by local discontinuous galerkin finite element method. J. Sci. Comput. 38(2), 127–148 (2009)
Zhu, J., Shu, C.-W.: A new type of multi-resolution weno schemes with increasingly higher order of accuracy. J. Comput. Phys. 375, 659–683 (2018)
Zhu, J., Shu, C.-W.: A new type of multi-resolution weno schemes with increasingly higher order of accuracy on triangular meshes. J. Comput. Phys. 392, 19–33 (2019)
Zhu, J., Shu, C.-W.: A new type of third-order finite volume multi-resolution weno schemes on tetrahedral meshes. J. Comput. Phys. 406, 109212 (2020)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Research is supported by NSFC Grant 11901555.
Appendix A: Smoothness Indicator \(\beta _r\)
Appendix A: Smoothness Indicator \(\beta _r\)
Here, we give the formulas of smoothness indicator \(\beta _r, r=1, 2, 3, 4\):
Rights and permissions
About this article
Cite this article
Jiang, Y. High Order Finite Difference Multi-resolution WENO Method for Nonlinear Degenerate Parabolic Equations. J Sci Comput 86, 16 (2021). https://doi.org/10.1007/s10915-020-01382-y
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10915-020-01382-y