Skip to main content
Log in

Structure-Preserving Numerical Approximations to a Non-isothermal Hydrodynamic Model of Binary Fluid Flows

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present two second order, structure-preserving numerical schemes for a newly derived thermodynamically consistent, non-isothermal hydrodynamical phase field model for incompressible binary viscous fluid flows. The schemes preserve the volume of each fluid phase, the total energy and the positive entropy production rate. The entropy quadratization approach is employed to devise the two semi-discrete numerical schemes in time, preserving both the total energy and the positive entropy production rate. The first scheme is weakly nonlinear, which is solved using iterative methods aided by fast Fourier algorithms. The second scheme is linear, in which a time-dependent supplementary variable is added to preserve the positive entropy production rate. The semi-discrete schemes are discretized in space by a finite difference method on staggered grids subsequently to yield two fully discrete schemes. Mesh refinement is carried out to confirm the order of the schemes and several numerical examples are provided to show hydrodynamic as well as thermal effects in resolving thermocapillary convection near the fluid interface in the incompressible binary viscous fluid flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Adamson, A.W., Gast, A.P.: Physical Chemistry of Surfaces, 3rd edn. Wiley, New York (1976)

    Google Scholar 

  2. Bestehorn, M.: Phase and amplitude instabilities for Benard–Marangoni convection in fluid layers with large aspect ratio. Phys. Rev. E 48(5), 3622 (1993)

    Article  MathSciNet  Google Scholar 

  3. Bird, R.B., Armstrong, R.C., Hassager, O.: Dynamics of Polymeric Liquids, Volume 1: Fluid Mechanics, 2nd edn. Wiley, Hoboken (1978)

    Google Scholar 

  4. Boyer, F.: Mathematical study of multiphase flow under shear through order parameter formulation. Asymptot. Anal. 20(2), 175–212 (1999)

    MathSciNet  MATH  Google Scholar 

  5. Cahn, J.W., Hilliard, J.E.: Free energy of a non-uniform system. I. Interfacial free energy. J. Chem. Phys. 28(2), 258–267 (1958)

    Article  MATH  Google Scholar 

  6. Cheng, Q., Liu, C., Shen, J.: A new Lagrange multiplier approach for gradient flows. Comput. Methods Appl. Mech. Eng. 367, 113070 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  7. Du, Q., Liu, C., Wang, X.: A phase field approach in the numerical study of the elastic bending energy for vesicle membranes. J. Comput. Phys. 198(2), 450–468 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Du, Q., Nicolaides, R.A.: Numerical analysis of a continuum model of phase transition. SIAM J. Numer. Anal. 28(5), 1310–1322 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Francesco, D.A., Liu, C.: Non-isothermal general Ericksen–Leslie system: derivation, analysis and thermodynamic consistency. Arch. Ration. Mech. Anal. 231(2), 637–717 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gong, Y.Z., Liu, X.F., Wang, Q.: Fully discretized energy stable schemes for hydrodynamic equations governing two-phase viscous fluid flows. J. Sci. Comput. 69(3), 1–25 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gong, Y.Z., Zhao, J., Wang, Q.: Second order fully discrete energy stable methods on staggered grids for hydrodynamic phase field models of binary viscous fluids. SIAM J. Sci. Comput. 40(2), B528–B553 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Guo, Z.L., Lin, P.: A thermodynamically consistent phase-field model for two-phase flows with thermocapillary effects. J. Fluid Mech. 766, 226–271 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Guo, Z.L., Lin, P., Wang, Y.F.: Continuous finite element schemes for a phase field model in two-layer fluid Benard–Marangoni convection computations. Comput. Phys. Commun. 185(1), 63–78 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gurtin, M.E., Polignone, D., Vinals, J.: Two-phase binary fluids and immiscible fluids described by an order parameter. Math. Methods Appl. Sci. 6(6), 815–831 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Helmut, A.: On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities. Arch. Ration. Mech. Anal. 194(2), 463–506 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Juel, A., Burgess, J.M., McCormick, W.D., Swift, J.B., Swinney, H.L.: Surface tension-driven convection patterns in two liquid layers. Physica D 143(1–4), 169–186 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li, J., Zhao, J., Wang, Q.: Energy and entropy preserving numerical approximations of thermodynamically consistent crystal growth models. J. Comput. Phys. 328, 202–220 (2019)

    Article  MathSciNet  Google Scholar 

  18. Liu, C., Shen, J.: A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Physica D Nonlinear Phenom. 179(3), 211–228 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, H.H., Valocchi, A.J., Zhang, Y.H., Kang, Q.J.: Phase-field-based lattice Boltzmann finite-difference model for simulating thermocapillary flows. Phys. Rev. E 87(1), 013010-1–013010-13 (2013)

  20. Liu, P., Wu, S., Liu, C.: Non-isothermal electrokinetics: energetic variational approach. Commun. Math. Sci. 16(5), 1451–1463 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Liu, Q.S., Roux, B., Velarde, M.G.: Thermocapillary convection in two-layer systems. Int. J. Heat Mass Transf. 41(11), 1499–1511 (1998)

    Article  MATH  Google Scholar 

  22. Lowengrub, J., Truskinovsky, L.: Quasi-incompressible Cahn–Hilliard fluids and topological transitions. Proc. R. Soc. A Math. Phys. Eng. Sci. 454(1978), 2617–2654 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pendse, B., Esmaeeli, A.: An analytical solution for thermocapillary-driven convection of superimposed fluids at zero Reynolds and Marangoni numbers. Int. J. Therm. Sci. 49(7), 1147–1155 (2010)

    Article  Google Scholar 

  24. Shan, X.W.: Simulation of Rayleigh–Benard convection using a lattice Boltzmann method. Phys. Rev. E 55(3), 2780–2788 (1997)

    Article  MathSciNet  Google Scholar 

  25. Tavener, S.J., Cliffe, K.A.: Two-fluid Marangoni Benard convection with a deformable interface. J. Comput. Phys. 182(1), 277–300 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Teigen, K.E., Song, P., Lowengrub, J., Voigt, A.: A diffuse-interface method for two-phase flows with soluble surfactants. J. Comput. Phys. 230(2), 375–393 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Velzen, D.V., Cardozo, R.L., Langenkamp, H.: A liquid viscosity–temperature–chemical constitution relation for organic compounds. Ind. Eng. Chem. Fundam. 11(1), 20–25 (1972)

    Article  Google Scholar 

  28. Yang, X., Li, J., Forest, M., Wang, Q.: Hydrodynamic theories for flows of active liquid crystals and the generalized onsager principle. Entropy 18(6), 202 (2016)

    Article  MathSciNet  Google Scholar 

  29. Yang, X., Zhao, J., He, X.: Linear, second order and unconditionally energy stable schemes for the viscous Cahn–Hilliard equation with hyperbolic relaxation using the invariant energy quadratization method. J. Comput. Appl. Math. 343, 80–97 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yang, X., Zhao, J., Wang, Q.: Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method. J. Comput. Phys. 333, 104–127 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yang, X., Zhao, J., Wang, Q., Shen, J.: Numerical approximations for a three-component Cahn–Hilliard phase-field model based on the invariant energy quadratization method. Math. Methods Appl. Sci. 27(11), 1993–2030 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yue, P., Feng, J., Liu, C., Shen, J.: A diffuse-interface method for simulating two-phase flows of complex fluids. J. Fluid Mech. 515, 293–317 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhao, J., Wang, Q., Yang, X.: Numerical approximations to a new phase field model for two phase flows of complex fluids. Comput. Methods Appl. Mech. Eng. 310, 77–97 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhao, J., Wang, Q., Yang, X.: Numerical approximations for a phase field dendritic crystal growth model based on the invariant energy quadratization approach. Int. J. Numer. Meth. Eng. 110(3), 279–300 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhou, B.H., Liu, Q.S., Tang, Z.M.: Rayleigh–Marangoni–Benard instability in two-layer fluid system. Acta. Mech. Sin. 24(4), 366–373 (2004)

    Google Scholar 

Download references

Acknowledgements

The research is partially supported by National Science Foundation DMS-1816783 award, DMS-1815921, OIA-1655740 and a GEAR award from SC EPSCoR/IDeA Program, NSFC awards #11801269 #11301287 and NSAF-U1930402.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S., Li, J., Zhao, J. et al. Structure-Preserving Numerical Approximations to a Non-isothermal Hydrodynamic Model of Binary Fluid Flows. J Sci Comput 83, 50 (2020). https://doi.org/10.1007/s10915-020-01229-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01229-6

Keywords

Navigation