Skip to main content
Log in

Truncation Error Estimation in the p-Anisotropic Discontinuous Galerkin Spectral Element Method

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In the context of discontinuous Galerkin spectral element methods (DGSEM), \(\tau \)-estimation has been successfully used for p-adaptation algorithms. This method estimates the truncation error of representations with different polynomial orders using the solution on a reference mesh of relatively high order. In this paper, we present a novel anisotropic truncation error estimator derived from the \(\tau \)-estimation procedure for the traditional DGSEM. We exploit the tensor product basis properties of the numerical solution to design a method where the total truncation error is calculated as a sum of its directional components. We show that the new error estimator is cheaper to evaluate than previous implementations of the \(\tau \)-estimation procedure and that it obtains more accurate extrapolations of the truncation error for representations of a higher order than the reference mesh. The robustness of the method allows performing the p-adaptation strategy with coarser reference solutions, thus further reducing the computational cost. The proposed estimator is validated using the method of manufactured solutions in a test case for the compressible Navier–Stokes equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Sufficiently high does not necessarily mean that the polynomial order of the other elements must be kept in P, but that it must be high enough so that the externally-generated contributions to the truncation error are less than the internally-generated ones.

References

  1. Aftosmis, M.J.: Upwind method for simulation of viscous flow on adaptively refined meshes. AIAA J. 32(2), 268–277 (1994). https://doi.org/10.2514/3.11981

    Article  MATH  Google Scholar 

  2. Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131, 267–279 (1997). https://doi.org/10.1006/jcph.1996.5572.http://isn-csm.mit.edu/literature/1997-jcp-bassi.pdf

  3. Berger, M.J.: Adaptive finite difference methods in fluid dynamics. In: Von Karman Institute for Fluid Dynamics, Computational Fluid Dynamics 50 p. (See N88-15951 08-34) (1987)

  4. Botti, L.: Influence of reference-to-physical frame mappings on approximation properties of discontinuous piecewise polynomial spaces. J. Sci. Comput. 52(3), 675–703 (2012). https://doi.org/10.1007/s10915-011-9566-3

    Article  MathSciNet  MATH  Google Scholar 

  5. Brandt, A., Livne, O.E.: Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics, Revised edn. SIAM, Philadelphia (2011). https://doi.org/10.1137/1.9781611970753

    Book  MATH  Google Scholar 

  6. Canuto, C., Hussaini, M.Y., Quarteroni, A., Thomas Jr., A.: Spectral Methods in Fluid Dynamics. Springer, Berlin (2012)

    MATH  Google Scholar 

  7. Choudhary, A., Roy, C.J.: Structured mesh r-refinement using truncation error equidistribution for 1D and 2D Euler problems. In: 21st AIAA Computational Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics, Reston, VA, AIAA 2013-244, pp. 1–15 (2013). https://doi.org/10.2514/6.2013-2444

  8. Cockburn, B., Karniadakis, G.E., Shu, C.W.: The development of discontinuous Galerkin methods. Discontinuous Galerkin Methods 11, 3–50 (2000). https://doi.org/10.1007/978-3-642-59721-3_1

    Article  MathSciNet  MATH  Google Scholar 

  9. Deng, S.: Numerical simulation of optical coupling and light propagation in coupled optical resonators with size disorder. Appl. Numer. Math. 57(5–7), 475–485 (2007). https://doi.org/10.1016/j.apnum.2006.07.001

    Article  MathSciNet  MATH  Google Scholar 

  10. Estep, D.: A posteriori error bounds and global error control for approximation of ordinary differential equations. SIAM J. Numer. Anal. 32(1), 1–48 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Eva Casoni y Antonio Huerta: Shock capturing for discontinuous Galerkin methods (2011). http://www.tesisenred.net/handle/10803/51571

  12. Ferrer, E., Willden, R.H.: A high order discontinuous Galerkin–Fourier incompressible 3D Navier–Stokes solver with rotating sliding meshes. J. Comput. Phys. 231(21), 7037–7056 (2012). https://doi.org/10.1016/j.jcp.2012.04.039

    Article  MathSciNet  MATH  Google Scholar 

  13. Fraysse, F., Redondo, C., Rubio, G., Valero, E.: Upwind methods for the Baer–Nunziato equations and higher-order reconstruction using artificial viscosity. J. Comput. Phys. 326, 805–827 (2016). https://doi.org/10.1016/j.jcp.2016.09.017

    Article  MathSciNet  MATH  Google Scholar 

  14. Fraysse, F., Valero, E., Ponsín, J.: Comparison of mesh adaptation using the adjoint methodology and truncation error estimates. AIAA J. 50(9), 1920–1932 (2012). https://doi.org/10.2514/1.J051450

    Article  Google Scholar 

  15. Georgoulis, E.: Discontinuous Galerkin methods on shape-regular and anisotropic meshes. Philosophy (2003). http://www.math.le.ac.uk/PEOPLE/eg64/papers/thesis_main.pdf

  16. Hartmann, R.: Error estimation and adjoint-based adaptation in aerodynamics. European Conference on Computational Fluid Dynamics, pp. 1–14 (2006)

  17. Hartmann, R., Houston, P.: Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations. J. Comput. Phys.183(2), 508–532 (2002). https://doi.org/10.1006/jcph.2002.7206. http://linkinghub.elsevier.com/retrieve/pii/S0021999102972062

  18. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer, New York (2008)

    Book  MATH  Google Scholar 

  19. Kompenhans, M., Rubio, G., Ferrer, E., Valero, E.: Adaptation strategies for high order discontinuous Galerkin methods based on Tau-estimation. J. Comput. Phys. 306, 216–236 (2016). https://doi.org/10.1016/j.jcp.2015.11.032

    Article  MathSciNet  MATH  Google Scholar 

  20. Kompenhans, M., Rubio, G., Ferrer, E., Valero, E.: Comparisons of p-adaptation strategies based on truncation-and discretisation-errors for high order discontinuous Galerkin methods. Comput. Fluids 139, 36–46 (2016). https://doi.org/10.1016/j.compfluid.2016.03.026

    Article  MathSciNet  MATH  Google Scholar 

  21. Kopriva, D.: Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers. Springer Science & Business Media B.V. (2010)

  22. Kopriva, D.A.: Metric identities and the discontinuous spectral element method on curvilinear meshes. J. Sci. Comput. 26(3), 301–327 (2006). https://doi.org/10.1007/s10915-005-9070-8

    Article  MathSciNet  MATH  Google Scholar 

  23. Kopriva, D.A., Woodruff, S.L., Hussaini, M.Y.: Computation of electromagnetic scattering with a non-conforming discontinuous spectral element method. Int. J. Numer. Methods Eng. 53(1), 105–122 (2002). https://doi.org/10.1002/nme.394

    Article  MATH  Google Scholar 

  24. Martin, R., Guillard, H.: A second order defect correction scheme for unsteady problems. Comput. Fluids 25(1), 9–27 (1996). https://doi.org/10.1016/0045-7930(95)00027-5

    Article  MATH  Google Scholar 

  25. Mavriplis, C.: Nonconforming discretizations and a posteriori error estimators for adaptive spectral element techniques (1989). http://hdl.handle.net/1721.1/14526

  26. Mavriplis, C.: Adaptive mesh strategies for the spectral element method. Institute for Computer Applications in Science and Engineering pp. 1–19 (1992). http://www.sciencedirect.com/science/article/pii/S0045782594800103

  27. Minoli, C.A.A., Kopriva, D.A.: Discontinuous Galerkin spectral element approximations on moving meshes. J. Comput. Phys. 230(5), 1876–1902 (2011). https://doi.org/10.1016/j.jcp.2010.11.038

    Article  MathSciNet  MATH  Google Scholar 

  28. Oberkampf, W.L., Roy, C.J.: Verification and Validation in Scientific Computing. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  29. Persson, P.O., Peraire, J.: Sub-cell shock capturing for discontinuous Galerkin methods. In: 44th AIAA Aerospace Sciences Meeting and Exhibit pp. 1–13 (2006). https://doi.org/10.2514/6.2006-112

  30. Phillips, T., Derlaga, J., Roy, C., Borggaard, J.: Finite volume solution reconstruction methods for truncation error estimation. In: 21st AIAA Computational Fluid Dynamics Conference (2013). https://doi.org/10.2514/6.2013-3090

  31. Phillips, T.S.: Residual-based discretization error estimation for computational fluid dynamics residual-based discretization error estimation for computatioanl fluid dynamics. Ph.D. thesis, Virginia Polytechnic Institute and State University (2014). https://vtechworks.lib.vt.edu/handle/10919/50647

  32. Phillips, T.S., Roy, C.J.: Residual methods for discretization error estimation. In: 20th AIAA Computational Fluid Dynamics Conference 3870(27–30), 665 (2011)

  33. Phillips, T.S., Roy, C.J.: A new extrapolation-based uncertainty estimator for computational fluid dynamics. J. Verif. Valid. Uncertain. Quantif. 1(4), 041,006 (2017). https://doi.org/10.1115/1.4035666

    Article  Google Scholar 

  34. Pierce, N.A., Giles, M.B.: Adjoint and defect error bounding and correction for functional estimates. J. Comput. Phys. 200(2), 769–794 (2004). https://doi.org/10.1016/j.jcp.2004.05.001

    Article  MathSciNet  MATH  Google Scholar 

  35. Rasetarinera, P., Hussaini, M.: An efficient implicit discontinuous spectral Galerkin method. J. Comput. Phys. 172(2), 718–738 (2001). https://doi.org/10.1006/jcph.2001.6853. http://linkinghub.elsevier.com/retrieve/pii/S0021999101968536

  36. Remacle, J.F., Flaherty, J.E., Shephard, M.S.: An adaptive discontinuous Galerkin technique with an orthogonal basis applied to compressible flow problems. SIAM Rev. 45(1), 53–72 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. Rivière, B.: Discontinuous Galerkin methods for solving elliptic and parabolic equations theory and implementation. SIAM (2008). https://doi.org/10.1137/1.9780898717440

  38. Roache, P.J.: Verification and validation in computational science and engineering, vol. 895. Hermosa Albuquerque, NM (1998)

  39. Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43(2), 357–372 (1981). https://doi.org/10.1016/0021-9991(81)90128-5

    Article  MathSciNet  MATH  Google Scholar 

  40. Roy, C.: Review of discretization error estimators in scientific computing. In: 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. American Institute of Aeronautics and Astronautics, Reston, VA (2010). https://doi.org/10.2514/6.2010-126

  41. Rubio, G., Fraysse, F., De Vicente, J., Valero, E.: The estimation of truncation error by \(\tau \)-estimation for Chebyshev spectral collocation method. J. Sci. Comput. 57(1), 146–173 (2013). https://doi.org/10.1007/s10915-013-9698-8

    Article  MathSciNet  MATH  Google Scholar 

  42. Rubio, G., Fraysse, F., Kopriva, D.A., Valero, E.: Quasi-a priori truncation error estimation in the DGSEM. J. Sci. Comput. 64(2), 425–455 (2015). https://doi.org/10.1007/s10915-014-9938-6

    Article  MathSciNet  MATH  Google Scholar 

  43. Rubio Calzado, G.: Truncation Error Estimation in the Discontinuous Galerkin Spectral Element Method. Ph.D. thesis, Universidad Politécnica de Madrid. School of Aeronautics (ETSIAE) (2015)

  44. Syrakos, A., Efthimiou, G., Bartzis, J.G., Goulas, A.: Numerical experiments on the efficiency of local grid refinement based on truncation error estimates. J. Comput. Phys. 231(20), 6725–6753 (2012). https://doi.org/10.1016/j.jcp.2012.06.023

    Article  MathSciNet  Google Scholar 

  45. Syrakos, A., Goulas, A.: Finite volume adaptive solutions using SIMPLE as smoother. Int. J. Numer. Methods Fluids 52(11), 1215–1245 (2006). https://doi.org/10.1002/fld.1228

    Article  MathSciNet  MATH  Google Scholar 

  46. Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer-Verlag, Berlin (2009)

    Book  MATH  Google Scholar 

  47. Venditti, D.A., Darmofal, D.L.: Grid adaptation for functional outputs: application to two-dimensional inviscid flows. J. Comput. Phys. 176(1), 40–69 (2002). https://doi.org/10.1006/jcph.2001.6967. http://linkinghub.elsevier.com/retrieve/pii/S0021999101969670

  48. Wang, Z., Fidkowski, K., Abgrall, R., Bassi, F., Caraeni, D., Cary, A., Deconinck, H., Hartmann, R., Hillewaert, K., Huynh, H., Kroll, N., May, G., Persson, P.O., van Leer, B., Visbal, M.: High-order CFD methods: current status and perspective. Int. J. Numer. Methods Fluids 72(8), 811–845 (2013). https://doi.org/10.1002/fld.3767

    Article  MathSciNet  Google Scholar 

  49. Zienkiewicz, O.C.: The background of error estimation and adaptivity in finite element computations. Comput. Methods Appl. Mech. Eng. 195(4–6), 207–213 (2006). https://doi.org/10.1016/j.cma.2004.07.053

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank David Kopriva for his friendly advise and cooperation. This project has received funding from the European Union’s Horizon 2020 Research and Innovation Program under the Marie Skłodowska-Curie Grant agreement No. 675008. The authors acknowledge the computer resources and technical assistance provided by the Centro de Supercomputación y Visualización de Madrid (CeSViMa).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés M. Rueda-Ramírez.

Appendices

Appendix A: Isolated Truncation Error Dependence on Interpolation Error

According to Definition 5 and Eq. 37, the isolated truncation error in the DGSEM can be expressed for any basis function \(\phi \) in an element e as

$$\begin{aligned} {\hat{\tau }}^N \bigr |_{{\varOmega }^e} = \hat{{\mathcal {R}}} ({\mathbf {I}}^N \bar{{\mathbf {q}}}) = \int ^N_{{\varOmega }^e} {\mathbf {s}}^N \phi d{\varOmega } + \int ^N_{{\varOmega }^e} {\mathscr {F}}^N \cdot \nabla \phi d {\varOmega } - \int ^N_{\partial {\varOmega }^e} {\mathscr {F}}^N \cdot {\mathbf {n}} \phi d \sigma , \end{aligned}$$
(71)

where the superindex N on the integrals indicates that they are approximated with a Gaussian quadrature of order N and the superindex e has been dropped for readability. Since the DGSEM is a collocation method, the value computed with Eq. 71 corresponds to the isolated truncation error on the node of the basis function \(\phi \). The terms \({\mathbf {s}}^N\) and \({\mathscr {F}}^N\) can be expressed in terms of the interpolation error as

$$\begin{aligned} {\mathscr {F}}^N = {\mathbf {I}}^N {\mathscr {F}}(\bar{{\mathbf {q}}}) = {\mathscr {F}}(\bar{{\mathbf {q}}}) - \varepsilon ^N_{{\mathscr {F}}}, \ \ \ {\mathbf {s}}^N = {\mathbf {I}}^N {\mathbf {s}} = {\mathbf {s}} - \varepsilon ^N_{{\mathbf {s}}}. \end{aligned}$$
(72)

Inserting Eq. 72 into 71, integrating by parts, and expressing everything with \(L_2({\varOmega })\) inner product notation we obtain,

(73)

where \((\cdot ,\cdot )^N_{{\varOmega }^e}\) stands for the \(L_2\) product operator evaluated with a quadrature of order N in the domain \({{\varOmega }^e}\). The first term on the right-hand side vanishes since the value of \(\varepsilon _{{\mathbf {s}}}^N\) is zero on the quadrature nodes (the DGSEM is a collocation method). Furthermore, it is reasonable to neglect the quadrature error since it is of a lower order of magnitude than the value of the integral. Therefore, we obtain

$$\begin{aligned} {\hat{\tau }}^N \bigr |_{{\varOmega }^e} \approx \left( \nabla \cdot \varepsilon ^N_{{\mathscr {F}}} , \phi \right) ^N_{{\varOmega }^e}. \end{aligned}$$
(74)

Appendix B: Anisotropic Non-isolated Truncation Error Estimation

In this section, we show briefly that the non-isolated truncation error can be estimated anisotropically using Proposition 1. In order to do so, we need some additional assumptions.

1.1 B.1 Additional Assumptions

As in Sect. 3.1, following assumptions are a consequence of the tensor product basis functions of the DGSEM and hold for sufficiently smooth solutions in the asymptotic range:

  1. (c)

    The discretization error has an anisotropic behavior and, therefore, can be decoupled in directional components. For the 2D case:

    $$\begin{aligned} \epsilon ^{N_1N_2} = \epsilon _1^{N_1N_2} + \epsilon _2^{N_1N_2}. \end{aligned}$$
    (75)

    As in (a), \(\epsilon _i\) is the projection of the global discretization error, \(\epsilon \), into a local direction, i.

  2. (d)

    The locally-generated discretization error in each direction depends only on the polynomial order in that direction:

    $$\begin{aligned} \epsilon _{{\varOmega },i}^{N_1N_2} = \epsilon _{{\varOmega },i}^{N_1N_2}(N_i) \end{aligned}$$
    (76)

Following the same reasoning as in Remark 2, and for reasons that will become clear at the end of the proof, an additional assumption is required:

  1. (e)

    The \(\tau \)-estimation procedure is performed element-wise while keeping the polynomial order in other elements sufficiently high so that:

    $$\begin{aligned} \left|\left|\epsilon ^N_{\partial {\varOmega }}\right|\right| \ll \left|\left|\epsilon ^N_{{\varOmega }}\right|\right| \end{aligned}$$
    (77)

As (a) and (b), assumptions (c) and (d) also follow from the work of Rubio et al. [42, 43]. The authors remark that assumptions (a), (b), (c) and (d) are consistent with the dependence of the non-isolated truncation error on the discretization error (Eq. 33). Furthermore, assumption (e) imposes an additional requirement for Proposition 1 to hold: that the polynomial orders of the elements not being analyzed must be maintained high enough during \(\tau \)-estimation, so that the externally-generated contributions to the discretization error are smaller than the internally-generated ones.

Let us note that the assumption (d) implies that, for smooth solutions in the asymptotic range, the discretization error in one direction does not change considerably when the polynomial order in another direction is changed:

$$\begin{aligned}&\epsilon _j^{N_iP_j} \approx \epsilon _j^{P_iP_j}, \nonumber \\&\epsilon _i^{N_iP_j} \ne \epsilon _i^{P_iP_j}, \end{aligned}$$
(78)

with \(i \ne j\), and \(1 \le i,j \le 2\).

Proof

Following the same procedure as in “Appendix A”, according to Definition 4 and Eq. 31, the non-isolated truncation error in the DGSEM can be expressed for any basis function \(\phi \) in an element e as

$$\begin{aligned} \tau ^N \bigr |_{{\varOmega }^e} = {\mathcal {R}}^N ({\mathbf {I}}^N \bar{{\mathbf {q}}}) = \int ^N_{{\varOmega }^e} {\mathbf {s}}^N \phi d{\varOmega } + \int ^N_{{\varOmega }^e} {\mathscr {F}}({\mathbf {I}}^N\bar{{\mathbf {q}}}) \cdot \nabla \phi d {\varOmega } - \int ^N_{\partial {\varOmega }^e} {\mathscr {F}}^{*}({\mathbf {I}}^N \bar{{\mathbf {q}}},{\mathbf {I}}^N \bar{{\mathbf {q}}}^{\underline{\ }},{\mathbf {n}}) \phi d \sigma ,\nonumber \\ \end{aligned}$$
(79)

where \(\bar{{\mathbf {q}}}^{\underline{\ }}\) is the external (neighbor element’s) solution and the superindex “e” has been dropped for the local solution. Since the DGSEM is a collocation method, the value computed with Eq. 79 corresponds to the non-isolated truncation error on the node of the basis function \(\phi \). After inserting the definition of discretization error (Definition 2), \(\bar{{\mathbf {q}}}=\bar{{\mathbf {q}}}^N+\epsilon ^N\), and expanding the fluxes using Taylor series we obtain

$$\begin{aligned} \tau ^N \bigr |_{{\varOmega }^e} \approx \int ^N_{{\varOmega }^e} \frac{\partial {\mathscr {F}}}{\partial {\mathbf {q}}} \biggr |_{\bar{{\mathbf {q}}}^N} \epsilon ^N \cdot \nabla \phi d {\varOmega } - \int ^N_{\partial {\varOmega }^e} \frac{\partial \mathscr {F^*}}{\partial {\mathbf {q}}} \biggr |_{\bar{{\mathbf {q}}}^N,\bar{{\mathbf {q}}}^{\underline{N}},{\mathbf {n}}} \epsilon ^N \phi d \sigma - \int ^N_{\partial {\varOmega }^e} \frac{\partial \mathscr {F^*}}{\partial {\mathbf {q}}^{\underline{\ }}} \biggr |_{\bar{{\mathbf {q}}}^N,\bar{{\mathbf {q}}}^{\underline{N}},{\mathbf {n}}} \epsilon ^{\underline{N}} \phi d \sigma ,\nonumber \\ \end{aligned}$$
(80)

where the interpolant of the discretization error is omitted for readability (\({\mathbf {I}}^N\epsilon ^N \rightarrow \epsilon ^N\)), \(\epsilon ^N\) is the discretization error of the element e, and \(\epsilon ^{\underline{N}}\) is the discretization error of a neighbor element connected through the surface \(\partial {\varOmega }\). Notice that, for the sake of readability, the symbol for the external polynomial orders is the same as of the internal ones, i.e. N, although they can be different.

We now want to approximate the non-isolated truncation error through \(\tau \)-estimation. We part from the definition of the discretization error (Eq. 20). Adding and subtracting the discrete solution on a higher order grid, \({\mathbf {q}}^P\), yields

$$\begin{aligned} \epsilon ^N&= \bar{{\mathbf {q}}}-\bar{{\mathbf {q}}}^P+\bar{{\mathbf {q}}}^P-\bar{{\mathbf {q}}}^N \\ \epsilon ^N&= \epsilon ^P +\bar{ {\mathbf {q}}}^P -\bar{ {\mathbf {q}}}^N. \end{aligned}$$

Reorganizing we have

$$\begin{aligned} \bar{{\mathbf {q}}}^P = \bar{{\mathbf {q}}}^N + \epsilon ^N - \epsilon ^P. \end{aligned}$$
(81)

Therefore, the \(\tau \)-estimation yields

$$\begin{aligned} \tau _P^N \bigr |_{{\varOmega }^e}= & {} {\mathcal {R}} ({\mathbf {I}}^N \bar{{\mathbf {q}}}^P) \approx \int ^N_{{\varOmega }^e} \frac{\partial {\mathscr {F}}}{\partial {\mathbf {q}}} \biggr |_{\bar{{\mathbf {q}}}^N} (\epsilon ^N - \epsilon ^P) \cdot \nabla \phi d {\varOmega } - \int ^N_{\partial {\varOmega }^e} \frac{\partial \mathscr {F^*}}{\partial {\mathbf {q}}} \biggr |_{\bar{{\mathbf {q}}}^N,\bar{{\mathbf {q}}}^{\underline{N}},{\mathbf {n}}} (\epsilon ^N - \epsilon ^P) \phi d \sigma \nonumber \\&- \int ^N_{\partial {\varOmega }^e} \frac{\partial \mathscr {F^*}}{\partial {\mathbf {q}}^{\underline{\ }}} \biggr |_{\bar{{\mathbf {q}}}^N,\bar{{\mathbf {q}}}^{\underline{N}},{\mathbf {n}}} (\epsilon ^{\underline{N}} - \epsilon ^{\underline{P}}) \phi d \sigma . \end{aligned}$$
(82)

Since it is possible to decouple the discretization error inside our analyzed element in a locally-generated and an externally-generated component (Eq. 21), Eq. 82 can be rewritten as

$$\begin{aligned} \tau _P^N \bigr |_{{\varOmega }^e}&\approx \int ^N_{{\varOmega }^e} \frac{\partial {\mathscr {F}}}{\partial {\mathbf {q}}} \biggr |_{\bar{{\mathbf {q}}}^N} (\epsilon _{{\varOmega }}^N - \epsilon _{{\varOmega }}^P) \cdot \nabla \phi d {\varOmega } - \int ^N_{\partial {\varOmega }^e} \frac{\partial \mathscr {F^*}}{\partial {\mathbf {q}}} \biggr |_{\bar{{\mathbf {q}}}^N,\bar{{\mathbf {q}}}^{\underline{N}},{\mathbf {n}}} (\epsilon _{{\varOmega }}^N - \epsilon _{{\varOmega }}^P) \phi d \sigma \nonumber \\&\quad + \int ^N_{{\varOmega }^e} \frac{\partial {\mathscr {F}}}{\partial {\mathbf {q}}} \biggr |_{\bar{{\mathbf {q}}}^N} (\epsilon _{\partial {\varOmega }}^N - \epsilon _{\partial {\varOmega }}^P) \cdot \nabla \phi d {\varOmega } - \int ^N_{\partial {\varOmega }^e}\frac{\partial \mathscr {F^*}}{\partial {\mathbf {q}}} \biggr |_{\bar{{\mathbf {q}}}^N,\bar{{\mathbf {q}}}^{\underline{N}},{\mathbf {n}}} (\epsilon _{\partial {\varOmega }}^N - \epsilon _{\partial {\varOmega }}^P) \phi d \sigma \nonumber \\&\quad - \int ^N_{\partial {\varOmega }^e} \frac{\partial \mathscr {F^*}}{\partial {\mathbf {q}}^{\underline{\ }}} \biggr |_{\bar{{\mathbf {q}}}^N,\bar{{\mathbf {q}}}^{\underline{N}},{\mathbf {n}}} (\epsilon ^{\underline{N}} - \epsilon ^{\underline{P}}) \phi d \sigma . \end{aligned}$$
(83)

Equation 83 holds even for anisotropic representations, i.e. \(N=(N_1,N_2,N_3)\) and \(P=(P_1,P_2,P_3)\). Let us note that if the polynomial order of the elements that are not being analyzed is maintained as high as in the reference mesh, \(\epsilon _{\partial {\varOmega }}^P\) cancels out \(\epsilon _{\partial {\varOmega }}^N\) and \(\epsilon ^{\underline{N}} - \epsilon ^{\underline{P}} \approx 0\), i.e., the \(\tau \)-estimation provides the locally-generated truncation error.

Let us now consider the case of 2D anisotropic coarsening in the direction i (\({\mathbf {N}}=(N_i,P_j)\), \({\mathbf {P}}=(P_i,P_j)\)). Taking into account assumptions (c) and (d), we obtain

$$\begin{aligned} \tau _{{\mathbf {P}}}^{{\mathbf {N}}} \bigr |_{{\varOmega }^e}&\approx \int ^{{\mathbf {N}}}_{{\varOmega }^e} \frac{\partial {\mathscr {F}}}{\partial {\mathbf {q}}} \biggr |_{\bar{{\mathbf {q}}}^{{\mathbf {N}}}} (\epsilon _{{\varOmega },i}^{{\mathbf {N}}} - \epsilon _{{\varOmega },i}^{{\mathbf {P}}}) \cdot \nabla \phi d {\varOmega } - \int ^{{\mathbf {N}}}_{\partial {\varOmega }^e} \frac{\partial \mathscr {F^*}}{\partial {\mathbf {q}}} \biggr |_{\bar{{\mathbf {q}}}^{{\mathbf {N}}},\bar{{\mathbf {q}}}^{\underline{{{\mathbf {N}}}}},{\mathbf {n}}} (\epsilon _{{\varOmega },i}^{{\mathbf {N}}} - \epsilon _{{\varOmega },i}^{{\mathbf {P}}}) \phi d \sigma \nonumber \\&\quad + \int ^{{\mathbf {N}}}_{{\varOmega }^e} \frac{\partial {\mathscr {F}}}{\partial {\mathbf {q}}} \biggr |_{\bar{{\mathbf {q}}}^{{\mathbf {N}}}} (\epsilon _{\partial {\varOmega }}^{{\mathbf {N}}} - \epsilon _{\partial {\varOmega }}^{{\mathbf {P}}}) \cdot \nabla \phi d {\varOmega } - \int ^{{\mathbf {N}}}_{\partial {\varOmega }^e} \frac{\partial \mathscr {F^*}}{\partial {\mathbf {q}}} \biggr |_{\bar{{\mathbf {q}}}^{{\mathbf {N}}},\bar{{\mathbf {q}}}^{\underline{{{\mathbf {N}}}}},{\mathbf {n}}} (\epsilon _{\partial {\varOmega }}^{{\mathbf {N}}} - \epsilon _{\partial {\varOmega }}^{{\mathbf {P}}}) \phi d \sigma \nonumber \\&\quad - \int ^{{\mathbf {N}}}_{\partial {\varOmega }^e} \frac{\partial \mathscr {F^*}}{\partial {\mathbf {q}}^{\underline{\ }}} \biggr |_{\bar{{\mathbf {q}}}^{{\mathbf {N}}},\bar{{\mathbf {q}}}^{\underline{{{\mathbf {N}}}}},{\mathbf {n}}} (\epsilon ^{\underline{{{\mathbf {N}}}}} - \epsilon ^{\underline{{{\mathbf {P}}}}}) \phi d \sigma . \end{aligned}$$
(84)

It is important to note that for sufficiently smooth solutions, the discretization errors in the high order mesh of order \({\mathbf {P}}\) are smaller than the discretization errors in the analyzed mesh \({\mathbf {N}}\) and therefore can be neglected. Finally, if assumptions (c) and (e) hold, the anisotropic version of Eq. 83 (\(N=(N_1,N_2,N_3)\)) can be reconstructed by summing all the directional components (Eq. 84) if the quadrature errors are neglected. I.e., we recover Eq. 45:

$$\begin{aligned} \tau ^{N_1N_2} \approx \tau ^{N_1P_2}_{P_1P_2} + \tau ^{P_1N_2}_{P_1P_2} \end{aligned}$$
(85)

\(\square \)

Appendix C: The Navier–Stokes Equations

The compressible Navier–Stokes equations in conservative form can be written in non-dimensional form as

$$\begin{aligned} {\mathbf {q}}_t + \nabla \cdot \left( {\mathscr {F}}^a - {\mathscr {F}}^{\nu } \right) = {\mathbf {s}}, \end{aligned}$$
(86)

where the conserved variables are \({\mathbf {q}} = \left( \rho , \rho u, \rho v, \rho w, \rho e \right) ^T\) (\(\rho \) is the density; u, v and w are the velocity components; and e is the specific total energy), \({\mathbf {s}}\) is an external source term, and \({\mathscr {F}}^a\) and \({\mathscr {F}}^{\nu }\) are called the advective and diffusive flux dyadic tensors, respectively, which depend on \({\mathbf {q}}\). Expanding the fluxes in Cartesian coordinates leads to the expression,

$$\begin{aligned} {\mathbf {q}}_t + {\mathbf {f}}^a_x + {\mathbf {g}}^a_y + {\mathbf {h}}^a_z - \frac{1}{{\mathrm{Re}}} \left( {\mathbf {f}}^{\nu }_x + {\mathbf {g}}^{\nu }_y + {\mathbf {h}}^{\nu }_z \right) = {\mathbf {s}}. \end{aligned}$$
(87)

Here, Re is the Reynolds number. The advective fluxes are then defined as

$$\begin{aligned} {\mathbf {f}}^a = \begin{bmatrix} \rho u \\ p + \rho u^2\\ \rho u v \\ \rho u w \\ u (\rho e + p) \end{bmatrix}, {\mathbf {g}}^a = \begin{bmatrix} \rho v \\ \rho u v \\ p + \rho v^2\\ \rho v w \\ v (\rho e + p) \end{bmatrix}, {\mathbf {h}}^a = \begin{bmatrix} \rho w \\ \rho u w \\ \rho v w \\ p + \rho w^2\\ w (\rho e + p) \end{bmatrix}, \end{aligned}$$
(88)

where the pressure p is computed using the calorically perfect gas approximation. On the other hand, the diffusive fluxes are defined as

$$\begin{aligned} {\mathbf {f}}^{\nu }&= \begin{bmatrix} 0 \\ \tau _{xx} \\ \tau _{xy} \\ \tau _{xz} \\ u \tau _{xx} + v \tau _{xy} + w \tau _{xz} + \frac{\kappa }{(\gamma - 1) {\mathrm{Pr}} \mathrm {M}^2} T_x \end{bmatrix}, \end{aligned}$$
(89)
$$\begin{aligned} {\mathbf {g}}^{\nu }&= \begin{bmatrix} 0 \\ \tau _{yx} \\ \tau _{yy} \\ \tau _{yz} \\ u \tau _{yx} + v \tau _{yy} + w \tau _{yz} + \frac{\kappa }{(\gamma - 1) {\mathrm{Pr}} \mathrm {M}^2} T_y \\ \end{bmatrix}, \end{aligned}$$
(90)
$$\begin{aligned} {\mathbf {h}}^{\nu }&= \begin{bmatrix} 0 \\ \tau _{zx} \\ \tau _{zy} \\ \tau _{zz} \\ u \tau _{zx} + v \tau _{zy} + w \tau _{zz} + \frac{\kappa }{(\gamma - 1) {\mathrm{Pr}} \mathrm {M}^2} T_z \end{bmatrix}, \end{aligned}$$
(91)

where T is the temperature, \(\gamma \) is the heat capacity ratio, and \(\kappa \) is the thermal diffusivity. The nondimensional parameters are Pr, the Prandtl number; and M, the Mach number. The stress tensor components are computed using the Stokes hypothesis,

$$\begin{aligned} \tau _{ij}&= \mu \left( \frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} \right) , i \ne j \end{aligned}$$
(92)
$$\begin{aligned} \tau _{ii}&= 2 \mu \left( \frac{\partial v_i}{\partial x_i} + \nabla \cdot {\mathbf {V}} \right) , \end{aligned}$$
(93)

with \(\mu \) the fluid’s viscosity, and \({\mathbf {V}}\) the flow velocity. For the simulations in this paper we chose the typical parameters for air: \({\mathrm{Pr}} = 0.72\), \(\gamma = 1.4\), while \(\mu \) and \(\kappa \) are calculated using Sutherland’s law.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rueda-Ramírez, A.M., Rubio, G., Ferrer, E. et al. Truncation Error Estimation in the p-Anisotropic Discontinuous Galerkin Spectral Element Method. J Sci Comput 78, 433–466 (2019). https://doi.org/10.1007/s10915-018-0772-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0772-0

Keywords

Mathematics Subject Classification

Navigation