Skip to main content
Log in

A Fast Algorithm for the Moments of Bingham Distribution

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose a fast algorithm for evaluating the moments of Bingham distribution. The calculation is done by piecewise rational approximation, where interpolation and Gaussian integrals are utilized. Numerical tests show that the algorithm reaches the maximum absolute error less than \(5\times 10^{-8}\) remarkably faster than adaptive numerical quadrature. We apply the algorithm to a model for liquid crystals with the Bingham distribution to examine the defect patterns of rod-like molecules confined in a sphere, and find a different pattern from the Landau-de Gennes theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. https://github.com/yixiangLuo/Bingham-moment-function/.

References

  1. Alastrué, V., Sáez, P., Martínez, M., Doblaré, M.: On the use of the Bingham statistical distribution in microsphere-based constitutive models for arterial tissue. Mech. Res. Commun. 37(8), 700–706 (2010)

    Article  MATH  Google Scholar 

  2. Avriel, M.: Nonlinear Programming: Analysis and Methods. Courier Corporation, North Chelmsford (2003)

    MATH  Google Scholar 

  3. Ball, J.M., Majumdar, A.: Nematic liquid crystals: from Maier–Saupe to a continuum theory. Mol. Cryst. Liq. Cryst. 525(1), 1–11 (2010)

    Article  Google Scholar 

  4. Bingham, C.: An antipodally symmetric distribution on the sphere. Ann. Stat. 2(6), 1201–1225 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  5. De Gennes, P.G., Prost, J.: The Physics of Liquid Crystals, 2nd edn. Oxford Science Publications, Oxford (1993)

    Google Scholar 

  6. Descoteaux, M., Deriche, R., Knösche, T.R., Anwander, A.: Deterministic and probabilistic tractography based on complex fibre orientation distributions. IEEE Trans. Med. Imaging 28(2), 269–286 (2009)

    Article  Google Scholar 

  7. Feng, J., Chaubal, C., Leal, L.: Closure approximations for the Doi theory: Which to use in simulating complex flows of liquid-crystalline polymers? J. Rheol. 42(5), 1095–1119 (1998)

    Article  Google Scholar 

  8. Grosso, M., Maffettone, P.L., Dupret, F.: A closure approximation for nematic liquid crystals based on the canonical distribution subspace theory. Rheol. Acta 39(3), 301–310 (2000)

    Article  Google Scholar 

  9. Han, J., Luo, Y., Wang, W., Zhang, P., Zhang, Z.: From microscopic theory to macroscopic theory: a systematic study on modeling for liquid crystals. Arch. Ration. Mech. Anal. 215(3), 741–809 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hu, Y., Qu, Y., Zhang, P.: On the disclination lines of nematic liquid crystals. Commun. Comput. Phys. 19, 354–379 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kent, J., Briden, J., Mardia, K.: Linear and planar structure in ordered multivariate data as applied to progressive demagnetization of palaeomagnetic remanence. Geophys. J. Int. 75(3), 593–621 (1983)

    Article  MATH  Google Scholar 

  12. Kent, J.T.: Asymptotic expansions for the Bingham distribution. J. R. Stat. Soc. Ser. C Appl. Stat. 36(2), 139–144 (1987)

  13. Kirschvink, J.: The least-squares line and plane and the analysis of palaeomagnetic data. Geophys. J. Int. 62(3), 699–718 (1980)

    Article  Google Scholar 

  14. Kume, A., Preston, S., Wood, A.T.: Saddlepoint approximations for the normalizing constant of Fisher–Bingham distributions on products of spheres and Stiefel manifolds. Biometrika 100(4), 971–984 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kume, A., Wood, A.T.: Saddlepoint approximations for the Bingham and Fisher–Bingham normalising constants. Biometrika 92(2), 465–476 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kunze, K., Schaeben, H.: The bingham distribution of quaternions and its spherical radon transform in texture analysis. Math. Geol. 36(8), 917–943 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Marrucci, G., Greco, F.: The elastic constants of maier-saupe rodlike molecule nematics. Mol. Cryst. Liq. Cryst. 206(1), 17–30 (1991)

    Article  Google Scholar 

  18. Minka, T.P.: Automatic choice of dimensionality for PCA. NIPS 13, 598–604 (2000)

    Google Scholar 

  19. Onstott, T.C.: Application of the Bingham distribution function in paleomagnetic studies. J. Geophys. Res. Solid Earth 85(B3), 1500–1510 (1980)

    Article  Google Scholar 

  20. Shen, J., Tang, T., Wang, L.L.: Spectral Methods: Algorithms, Analysis and Applications, vol. 41. Springer, Berlin (2011)

    MATH  Google Scholar 

  21. Wang, H., Li, K., Zhang, P.: Crucial properties of the moment closure model FENE-QE. J. Non-Newton. Fluid Mech. 150(2), 80–92 (2008)

    Article  MATH  Google Scholar 

  22. Zhao, F., Peng, J., Xu, J.: Fragment-free approach to protein folding using conditional neural fields. Bioinformatics 26(12), i310–i317 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Xu.

Additional information

Pingwen Zhang is supported by National Natural Science Foundations of China (Grant Nos. 11421101 and 11421110001).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Xu, J. & Zhang, P. A Fast Algorithm for the Moments of Bingham Distribution. J Sci Comput 75, 1337–1350 (2018). https://doi.org/10.1007/s10915-017-0589-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0589-2

Keywords

Mathematics Subject Classification

Navigation