Skip to main content
Log in

A Dimension Reduction Shannon-Wavelet Based Method for Option Pricing

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present a robust and highly efficient dimension reduction Shannon-wavelet method for computing European option prices and hedging parameters under a general jump-diffusion model with square-root stochastic variance and multi-factor Gaussian interest rates. Within a dimension reduction framework, the option price can be expressed as a two-dimensional integral that involves only (i) the value of the variance at the terminal time, and (ii) the time-integrated variance process conditional on this value. A Shannon wavelet inverse Fourier technique is developed to approximate the conditional density of the time-integrated variance process. Furthermore, thanks to the excellent approximation properties of Shannon wavelets, the overall pricing procedure is reduced to the evaluation of just a single integral that involves only the density of the terminal variance value. This single integral can be accurately evaluated, since the density of the variance at the terminal time is known in closed-form. We develop sharp approximation error bounds for the option price and hedging parameters. Numerical experiments confirm the robustness and impressive efficiency of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. A stochastic factor is usually understood as a source of randomness which is typically modelled by a Brownian motion.

  2. Having a non-trivial correlation between the underlying asset price and its variance is important for capturing the skewness in the underlying asset price.

References

  1. Ahlip, R., Rutkowski, M.: Pricing of foreign exchange options under the Heston stochastic volatility model and CIR interest rates. Quant. Finance 13, 955–966 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alizadeh, S., Brandt, M., Diebold, F.: Range-based estimation of stochastic volatility models. J. Finance 57, 1047–1091 (2002)

    Article  Google Scholar 

  3. Andersen, L., Piterbarg, V.: Moment explosions in stochastic volatility models. Finance Stoch 11, 29–50 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Andersen, T.G., Benzoni, L., Lund, J.: An empirical investigation of continuous-time equity return models. J. Finance 57, 1239–1284 (2002)

    Article  Google Scholar 

  5. Bakshi, G., Cao, C., Zhiwu, C.: Empirical performance of alternativee option pricing models. J. Finance 52, 2003–2049 (1997)

    Article  Google Scholar 

  6. Bates, D.: Jumps and stochastic volatility: exchange rate process implicit in Deutsche Mark options. Rev. Financ. Stud. 9(1), 69–107 (1996)

    Article  Google Scholar 

  7. Berthe, E., Dang, D.M., Ortiz-Gracia, L.: A Shannon wavelet method for pricing foreign exchange options under the Heston multi-factor CIR model. Working paper, School of Mathematics and Physics, University of Queensland (2017)

  8. Brigo, D., Mercurio, F.: Interest Rate Models—Theory and Practice, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  9. Broadie, M., Kaya, O.: Exact simulation of stochastic volatility and other affine jump difusion processes. Oper. Res. 54, 217–231 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cattani, C.: Shannon wavelets theory. Mathe. Probl. Eng. Article ID 164808 (2008)

  11. Cont, R., Tankov, P.: Financial Modelling with Jump Processes. Chapman and Hall, London (2004)

    MATH  Google Scholar 

  12. Cox, J., Ingersoll, J., Ross, S.: A theory of the term structure of interest rates. Econometrica 53, 385–407 (1985a)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cox, J.C., Ingersoll, J.E., Ross, S.A.: A theory of the term structure of interest rates. Econometrica 53, 385–407 (1985b)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cozma, A., Reisinger, C.: A mixed Monte Carlo and PDE variance reduction method for foreign exchange options under the Heston-CIR model. J. Comput. Finance 20, 109–149 (2017)

    Google Scholar 

  15. Dang, D.M.: A multi-level dimension reduction Monte-Carlo method for jump-diffusion models. J. Comput. Appl. Math. 324, 49–71 (2017)

  16. Dang, D.M., Christara, C., Jackson, K.: GPU pricing of exotic cross-currency interest rate derivatives with a foreign exchange volatility skew model. J. Concurr. Comput. Pract. Exp. 26, 1609–1625 (2014)

    Article  Google Scholar 

  17. Dang, D.M., Christara, C., Jackson, K., Lakhany, A.: An efficient numerical PDE approach for pricing foreign exchange interest rate hybrid derivatives. J. Comput. Finance 18(4), 1–55 (2015a)

    Article  Google Scholar 

  18. Dang, D.M., Jackson, K.R., Mohammadi, M.: Dimension and variance reduction for Monte-Carlo methods for high-dimensional models in finance. Appl. Math. Finance 22(6), 522–552 (2015)

    Article  MathSciNet  Google Scholar 

  19. Dang, D.M., Jackson, K.R., Sues, S.: A dimension and variance reduction Monte-Carlo method for option pricing under jump-diffusion models. Appl. Math. Finance 24(3), 175–215 (2017). doi:10.1080/1350486X.2017.1358646

  20. Delbaen, F., Schachermayer, W.: A general version of the fundamental theorem of asset pricing. Math. Ann. 300, 463–520 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Duffie, D., Pan, J., Singleton, K.: Transform analysis and asset pricing for affine jump-diffusions. Econometrica 68, 1343–1376 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fang, F., Oosterlee, C.W.: A novel pricing method for European options based on Fourier-Cosine series expansions. SIAM J. Sci. Comput. 31, 826–848 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fang, F., Oosterlee, C.W.: A Fourier-based valuation method for Bermudan and barrier options under Heston’s model. SIAM J. Financ. Math. 2, 439–463 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gatheral, J.: The Volatility Surface: A Practitioner\(^{\prime }\)s Guide. Wiley Finance, New York (2006)

    Google Scholar 

  25. Gearhart, W.B., Shultz, H.S.: The function \(\sin (x)/x\). Coll. Math. J. 21, 90–99 (1990)

    Google Scholar 

  26. Giles, M.B.: Multi-level Monte Carlo path simulation. Oper. Res. 56, 607–617 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Grzelak, L.A., Oosterlee, C.W.: The affine Heston model with correlated Gaussian interest rates for pricing hybrid derivatives. Quant. Finance 11, 1647–1663 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Grzelak, L.A., Oosterlee, C.W.: On cross-currency models with stochastic volatility and correlated interest rates. Appl. Math. Finance 19, 1–35 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Grzelak, L.A., Oosterlee, C.W.: On the Heston model with stochastic interest rates. SIAM J. Fianan. Math. 2, 255–286 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Haastrecht, A.V., Lord, R., Pelsseri, A., Schrager, D.: Generic pricing of FX, inflation and stock options under stochastic interest rates and stochastic. Insur. Math. Econ. 45, 436–448 (2009)

    Article  MATH  Google Scholar 

  31. Haastrecht, A.V., Pelsser, A.: Generic pricing of FX, inflation and stock options under stochastic interest rates and stochastic volatility. Quant. Finance 11, 665–691 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Haentjens, T., In’t Hout, K.J.: Alternating direction implicit finite difference schemes for the Heston-Hull-White partial differential equation. J. Comput. Finance 16(1), 83–110 (2012)

    Article  Google Scholar 

  33. Heston, S.: A closed form solution for options with stochastic volatility with applications to bond and currency options. Rev. Finan. Stud. 6, 327–343 (1993)

    Article  Google Scholar 

  34. Hull, J., White, A.: One factor interest rate models and the valuation of interest rate derivative securities. J. Financ. Quant. Anal. 28(2), 235–254 (1993)

    Article  Google Scholar 

  35. Jamshidian, F., Zhu, Y.: Scenario simulation: theory and methodology. Finance Stoch. 13, 4367 (1997)

    MATH  Google Scholar 

  36. Kou, S.G.: A jump diffusion model for option pricing. Manag. Sci. 48, 1086–1101 (2002)

    Article  MATH  Google Scholar 

  37. Maree, S.C., Ortiz-Gracia, L., Oosterlee, C.W.: Pricing early-exercise and discrete barrier options by Shannon wavelet expansions. Numer. Math. 136 (4), 1035–1070 (2017)

  38. Merton, R.: Option pricing when underlying stock returns are discontinuous. J. Financ. Econ. 3, 125–144 (1976)

    Article  MATH  Google Scholar 

  39. Neuenkirch, A., Szpruch, L.: First order strong approximations of scalar SDEs with values in a domain. Numer. Math. 128, 103–136 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ortiz-Gracia, L., Oosterlee, C.W.: A highly efficient Shannon wavelet inverse Fourier technique for pricing European options. SIAM J. Sci. Comput. 38(1), B118–B143 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Pillay, E., O’Hara, J.: FFT based option pricing under a mean reverting process with stochastic volatility and jumps. J. Comput. Appl. Math. 235, 3378–3384 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Piterbarg, V.: Smiling hybrids. Risk Mag. 19(5), 66–70 (2006)

    Google Scholar 

  43. Rebonato, R.: Interest Rate Option Models, 2nd edn. Wiley, New York (1998)

    MATH  Google Scholar 

  44. Sippel, J., Ohkoshi, S.: All power to PRDC notes. Risk Mag. 15(11), 1–3 (2002)

    Google Scholar 

  45. Stenger, F.: Handbook of Sinc Numerical Methods. CRC Press, Boca Raton (2011)

    MATH  Google Scholar 

  46. Zhang, S., Wang, L.: Fast Fourier transform option pricing with stochastic interest rate, stochastic volatility and double jumps. Appl. Math. Comput. 219, 10928–10933 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duy-Minh Dang.

Additional information

This research was supported in part by a University of Queensland Early Career Researcher (ECR) Grant (Grant No. 1006301-01-298-21-609775), and by the Agència de Gestió i d’Ajuts Universitaris i de Recerca (Grant No. 2014SGR-1307).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, DM., Ortiz-Gracia, L. A Dimension Reduction Shannon-Wavelet Based Method for Option Pricing. J Sci Comput 75, 733–761 (2018). https://doi.org/10.1007/s10915-017-0556-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0556-y

Keywords

Mathematics Subject Classification

Navigation