Skip to main content

Advertisement

Log in

A Regularized Newton Method for Computing Ground States of Bose–Einstein Condensates

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we compute ground states of Bose–Einstein condensates (BECs), which can be formulated as an energy minimization problem with a spherical constraint. The energy functional and constraint are discretized by either the finite difference, or sine or Fourier pseudospectral discretization schemes and thus the original infinite dimensional nonconvex minimization problem is approximated by a finite dimensional constrained nonconvex minimization problem. Then we present a feasible gradient type method to solve this minimization problem, which is an explicit scheme and maintains the spherical constraint automatically. To accelerate the convergence of the gradient type method, we approximate the energy functional by its second-order Taylor expansion with a regularized term at each Newton iteration and adopt a cascadic multigrid technique for selecting initial data. It leads to a standard trust-region subproblem and we solve it again by the feasible gradient type method. The convergence of the regularized Newton method is established by adjusting the regularization parameter as the standard trust-region strategy. Extensive numerical experiments on challenging examples, including a BEC in three dimensions with an optical lattice potential and rotating BECs in two dimensions with rapid rotation and strongly repulsive interaction, show that our method is efficient, accurate and robust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2008)

    Book  MATH  Google Scholar 

  2. Adhikari, S.K.: Numerical solution of the two-dimensional Gross–Pitaevskii equation for trapped interacting atoms. Phys. Lett. A 265, 91–96 (2000)

    Article  Google Scholar 

  3. Aftalion, A., Du, Q.: Vortices in a rotating Bose–Einstein condensate: critical angular velocities and energy diagrams in the Thomas–Fermi regime. Phys. Rev. A 64, 063603 (2001)

    Article  Google Scholar 

  4. Aftalion, A., Danaila, I.: Three-dimensional vortex configurations in a rotating Bose–Einstein condensate. Phys. Rev. A 68, 023603 (2003)

    Article  Google Scholar 

  5. Anderson, M.H., Ensher, J.R., Mattews, M.R., Wieman, C.E., Cornell, E.A.: Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995)

    Article  Google Scholar 

  6. Anglin, J.R., Ketterle, W.: Bose–Einstein condensation of atomic gases. Nature 416, 211–218 (2002)

    Article  Google Scholar 

  7. Antoine, X., Duboscq, R.: GPELab, a Matlab toolbox to solve Gross–Pitaevskii equations I: computation of stationary solutions. Comput. Phys. Commun. 185, 2969–2991 (2014)

    Article  MATH  Google Scholar 

  8. Antoine, X., Duboscq, R.: Robust and efficient preconditioned Krylov spectral solvers for computing the ground states of fast rotating and strongly interacting Bose–Einstein condensates. J. Comput. Phys. 258, 509–523 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bao, W.: Ground states and dynamics of multi-component Bose–Einstein condensates. Multiscale Model. Simul. 2, 210–236 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bao, W., Cai, Y.: Mathematical theory and numerical methods for Bose–Einstein condensation. Kinet. Relat. Models 6, 1–135 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bao, W., Cai, Y.: Ground states of two-component Bose–Einstein condensates with an internal atomic Josephson junction. East Asia J. Appl. Math. 1, 49–81 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bao, W., Cai, Y.: Ground states and dynamics of spin–orbit-coupled Bose–Einstein condensates. SIAM J. Appl. Math. 75, 492–517 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bao, W., Cai, Y., Wang, H.: Efficient numerical methods for computing ground states and dynamics of dipolar Bose–Einstein condensates. J. Comput. Phys. 229, 7874–7892 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bao, W., Chern, I.L., Lim, F.Y.: Efficient and spectrally accurate numerical methods for computing ground and first excited states in Bose–Einstein condensates. J. Comput. Phys. 219, 836–854 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bao, W., Chern, I.L., Zhang, Y.: Efficient numerical methods for computing ground states of spin-1 Bose–Einstein condensates based on their characterizations. J. Comput. Phys. 253, 189–208 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bao, W., Du, Q.: Computing the ground state solution of Bose–Einstein condensates by a normalized gradient flow. SIAM J. Sci. Comput. 25, 1674–1697 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bao, W., Tang, W.: Ground state solution of Bose–Einstein condensate by directly minimizing the energy functional. J. Comput. Phys. 187, 230–254 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bao, W., Wang, H.: A mass and magnetization conservative and energy-diminishing numerical method for computing ground state of spin-1 Bose–Einstein condensates. SIAM J. Numer. Anal. 45, 2177–2200 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bao, W., Wang, H., Markowich, P.A.: Ground, symmetric and central vortex states in rotating Bose–Einstein condensates. Commun. Math. Sci. 3, 57–88 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Barzilai, J., Borwein, J.M.: Two-point step size gradient methods. IMA J. Numer. Anal. 8, 141–148 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bornemann, F.A., Deuflhard, P.: The Cascadic multigrid method for elliptic problems. Numer. Math. 75, 135–152 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bradley, C.C., Sackett, C.A., Tollett, J.J., Hulet, R.G.: Evidence of Bose–Einstein condensation in an atomic gas with attractive interations. Phys. Rev. Lett. 75, 1687–1690 (1995)

    Article  Google Scholar 

  23. Cancès, E., Chakir, R., Maday, Y.: Numerical analysis of nonlinear eigenvalue problems. J. Sci. Comput. 45, 90–117 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Cerimele, M.M., Chiofalo, M.L., Pistella, F., Succi, S., Tosi, M.P.: Numerical solution of the Gross–Pitaevskii equation using an explicit finite-difference scheme: an application to trapped Bose–Einstein condensates. Phys. Rev. E 62, 1382–1389 (2009)

    Article  Google Scholar 

  25. Chang, S.-L., Chien, C.-S., Jeng, B.-W.: Computing wave functions of nonlinear Schrödinger equations: a time-independent approach. J. Comput. Phys. 226, 104–130 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chang, S.M., Lin, W.W., Shieh, S.F.: Gauss-Seidel-type methods for energy states of a multi-component Bose–Einstein condensate. J. Comput. Phys. 202, 367–390 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Chiofalo, M.L., Succi, S., Tosi, M.P.: Ground state of trapped interacting Bose-Einstein condensates by an explicit imaginary-time algorithm. Phys. Rev. E 62, 7438–7444 (2000)

    Article  Google Scholar 

  28. Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-Region Methods, MPS/SIAM Series on Optimization. Society for Industrial and Applied Mathematics, Philadelphia (2000)

    Book  Google Scholar 

  29. Dalfovo, F., Giorgini, S., Pitaevskii, L.P., Stringari, S.: Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999)

    Article  Google Scholar 

  30. Danaila, I., Kazemi, P.: A new Sobolev gradient method for direct minimization of the Gross–Pitaevskii energy with rotation. SIAM J. Sci. Comput. 32, 2447–2467 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Davis, K.B., Mewes, M.O., Andrews, M.R., van Druten, N.J., Durfee, D.S., Kurn, D.M., Ketterle, W.: Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995)

    Article  Google Scholar 

  32. Dodd, R.J.: Approximate solutions of the nonlinear Schrödinger equation for ground and excited states of Bose–Einstein condensates. J. Res. Natl. Inst. Stand. Technol. 101, 545–552 (1996)

    Article  Google Scholar 

  33. Edwards, M., Burnett, K.: Numerical solution of the nonlinear Schrödinger equation for small samples of trapped neutral atoms. Phys. Rev. A 51, 1382–1386 (1995)

    Article  Google Scholar 

  34. Fetter, A.L.: Rotating trapped Bose–Einstein condensates. Rev. Mod. Phys. 81, 647–691 (2009)

    Article  Google Scholar 

  35. Garcia-Ripoll, J.J., Perez-Garcia, V.M.: Optimizing Schrödinger functional using Sobolev gradients: applications to quantum mechanics and nonlinear optics. SIAM J. Sci. Comput. 23, 1315–1333 (2001)

    Article  MATH  Google Scholar 

  36. Gross, E.P.: Structure of a quantized vortex in boson systems. Nuovo Cimento 20, 454–477 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  37. Jiang, B., Dai, Y.: A framework of constraint preserving update schemes for optimization on Stiefel manifold. Math. Program. A 153, 535–575 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  38. Leggett, A.J.: Bose–Einstein condensation in the alkali gases: some fundamental concepts. Rev. Mod. Phys. 73, 307–356 (2001)

    Article  Google Scholar 

  39. Lieb, E.H., Seiringer, R.: Derivation of the Gross–Pitaevskii equation for rotating Bose gases. Commun. Math. Phys. 264, 505–537 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lieb, E.H., Seiringer, R., Yngvason, J.: Bosons in a trap: a rigorous derivation of the Gross–Pitaevskii energy functional. Phys. Rev. A 61, 043602 (2000)

    Article  Google Scholar 

  41. Matthews, M.R., Anderson, B.P., Haljan, P.C., Hall, D.S., Wieman, C.E., Cornell, E.A.: Vortices in a Bose–Einstein condensate. Phys. Rev. Lett. 83, 2498–2501 (1999)

    Article  Google Scholar 

  42. Nocedal, J., Wright, S.J.: Numerical Optimization, Springer Series in Operations Research and Financial Engineering, 2nd edn. Springer, New York (2006)

    Google Scholar 

  43. Pethick, C.J., Smith, H.: Bose–Einstein Condensation in Dilute Gases. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  44. Pitaevskii, L.P.: Vortex lines in an imperfect Bose gas. Sov. Phys. JETP 13, 451–454 (1961)

    MathSciNet  Google Scholar 

  45. Pitaevskii, L.P., Stringari, S.: Bose–Einstein Condensation. Calrendon Press, Oxford (2003)

    MATH  Google Scholar 

  46. Raman, C., Abo-Shaeer, J.R., Vogels, J.M., Xu, K., Ketterle, W.: Vortex nucleation in a stirred Bose–Einstein condensate. Phys. Rev. Lett. 87, 210402 (2001)

    Article  Google Scholar 

  47. Ruprecht, P.A., Holland, M.J., Burrett, K., Edwards, M.: Time-dependent solution of the nonlinear Schrödinger equation for Bose-condensed trapped neutral atoms. Phys. Rev. A 51, 4704–4711 (1995)

    Article  Google Scholar 

  48. Schneider, B.I., Feder, D.L.: Numerical approach to the ground and excited states of a Bose–Einstein condensated gas confined in a completely anisotropic trap. Phys. Rev. A 59, 2232 (1999)

    Article  Google Scholar 

  49. Sun, W., Yuan, Y.-X.: Optimization Theory and Methods, vol. 1 of Springer Optimization and Its Applications. Springer, New York (2006)

    Google Scholar 

  50. Wen, Z., Milzarek, A., Ulbrich, M., Zhang, H.: Adaptive regularized self-consistent field iteration with exact Hessian for electronic structure calculation. SIAM J. Sci. Comput. 35, A1299–A1324 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  51. Wen, Z., Yin, W.: A feasible method for optimization with orthogonality constraints. Math. Program. Ser. A. 142, 397–434 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  52. Zhou, A.H.: An analysis of finite-dimensional approximations for the ground state solution of Bose–Einstein condensates. Nonlinearity 17, 541–550 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Part of this work was done when the authors were visiting the Institute for Mathematical Sciences at the National University of Singapore in 2015. The work of Xinming Wu is supported in part by NSFC Grants 91330202 and 11301089 and Shanghai Science and Technology Commission Grant 17XD1400500. The work of Zaiwen Wen is supported in part by NSFC Grants 11322109 and 91330202. The work of Weizhu Bao is supported in part by the Ministry of Education of Singapore Grant R-146-000-196-112.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinming Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Wen, Z. & Bao, W. A Regularized Newton Method for Computing Ground States of Bose–Einstein Condensates. J Sci Comput 73, 303–329 (2017). https://doi.org/10.1007/s10915-017-0412-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0412-0

Keywords

Mathematics Subject Classification

Navigation