Skip to main content
Log in

An Adaptive Finite Element Method for the Transmission Eigenvalue Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The classical weak formulation of the Helmholtz transmission eigenvalue problem can be linearized into an equivalent nonsymmetric eigenvalue problem. Based on this nonsymmetric eigenvalue problem, we first discuss the a posteriori error estimates and adaptive algorithm of conforming finite elements for the Helmholtz transmission eigenvalue problem. We give the a posteriori error indicators for primal eigenfunction, dual eigenfunction and eigenvalue. Theoretical analysis shows that the indicators for both primal eigenfunction and dual eigenfunction are reliable and efficient and that the indicator for eigenvalue is reliable. Numerical experiments confirm our theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cakoni, F., Gintides, D., Haddar, H.: The existence of an infinite discrete set of transmission eigenvalues. SIAM J. Math. Anal. 42, 237–255 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Colton, D., Kress, R.: Inverse acoustic and electromagnetic scattering theory. In: Applied Mathematical Sciences, 3rd edn., vol. 93, Springer, New York (2013)

  3. Colton, D., Monk, P., Sun, J.: Analytical and computational methods for transmission eigenvalues. Inverse Probl. 26, 045011 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Sun, J.: Iterative methods for transmission eigenvalues. SIAM J. Numer. Anal. 49, 1860–1874 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ji, X., Sun, J., Turner, T.: Algorithm 922: a mixed finite element method for helmholtz trans-mission eigenvalues. ACM Trans. Math. Softw. 38, 29 (2012)

    Article  MathSciNet  Google Scholar 

  6. An, J., Shen, J.: A spectral-element method for transmission eigenvalue problems. J. Sci. Comput. 57, 670–688 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ji, X., Sun, J., Xie, H.: A multigrid method for Helmholtz transmission eigenvalue problems. J. Sci. Comput. 60, 276–294 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cakoni, F., Monk, P., Sun, J.: Error analysis for the finite element approximation of transmission eigenvalues. Comput. Methods Appl. Math. 14, 419–427 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Li, T., Huang, W., Lin, W., Liu, J.: On spectral analysis and a novel algorithm for transmission eigenvalue problems. J. Sci. Comput. 64, 83–108 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Yang, Y., Han, J., Bi, H.: Error estimates and a two grid scheme for approximating transmission eigenvalues. arXiv:1506.06486v2 [math. NA] 2 Mar (2016)

  11. Babuska, I., Rheinboldt, W.: Error estimates for adaptive finite element computations. SIAM J. Numer. Anal. 15, 736–754 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  12. Verfurth, R.: A posteriori error estimators for the Stokes equations. Numer. Math. 55, 309–325 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ainsworth, M., Oden, J.T.: A unified approach to a posteriori error estimation using element residual methods. Numer. Math. 65, 23–50 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, Z., Nochetto, R.: Residual type a posteriori error estimates for elliptic obstacle problems. Numer. Math. 84, 527–548 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Du, S., Zhang, Z.: A robust residual-type a posteriori error estimator for convection–diffusion equations. J. Sci. Comput. 65, 138–170 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zienkiewicz, O., Zhu, J.: The superconvergent patch recovery and a posteriori error estimates. Part 1: the recovery technique. Int. J. Numer. Methods Eng. 33, 1331–1364 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Xu, J., Zhang, Z.: Analysis of recovery type a posteriori error estimators for mildly structured grids. Math. Comput. 73, 1139–1152 (2004)

  18. Ainsworth, M., Oden, J.: A Posterior Error Estimation in Finite Element Analysis. Wiley-Interscience, New York (2011)

    MATH  Google Scholar 

  19. Verfurth, R.: A posteriori Error Estimation Techniques. Oxford University Press, New York (2013)

    Book  MATH  Google Scholar 

  20. Shi, Z., Wang, M.: Finite Element Methods. Science Press, Beijing (2013)

    Google Scholar 

  21. Heuveline, V., Rannacher, R.: A posteriori error control for finite approximations of elliptic eigenvalue problems. Adv. Comput. Math. 15, 1–4 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Heuveline, V., Rannacher, R.: Adaptive FE eigenvalue approximation with application to hydrodynamic stability analysis. In: Fitzgibbon, W., et al. (eds.) Proceedings of the International Conference on Advances in Numerical Mathematics, Moscow, Sept 16–17, vol. 2005, pp. 109–140. Institute of Numerical Mathematics RAS, Moscow (2006)

  23. Carstensen, C., Gedicke, J.: An oscillation-free adaptive FEM for symmetric eigenvalue problems. Numer. Math. 14, 401–411 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Carstensen, C., Gedicke, J., Mehrmann, V., Miedlar, A.: An adaptive homotopy approach for non-selfadjoint eigenvalue problems. Numer. Math. 119, 557–583 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gedicke, J., Carstensen, C.: A posteriori error estimators for convection–diffusion eigenvalue problems. Comput. Methods Appl. Mech. Eng. 268, 160–177 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Giani, S., Graham, I.: A convergent adaptive method for elliptic eigenvalue problems. SIAM J. Numer. Anal. 47, 1067–1091 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rynne, B., Sleeman, B.: The interior transmission problem and inverse scattering from inhomogeneous media. SIAM J. Math. Anal. 22, 1755–1762 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  28. Blum, H., Rannacher, R.: On the boundary value problem of the biharmonic operator on domains with angular corners. Math. Method Appl. Sci. 2, 556–581 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  29. Babuska, I., Osborn, J.: Eigenvalue problems. In: Ciarlet, P.G., Lions, J.L. (eds.) Finite Element Methods (Part 1), Handbook of Numerical Analysis, vol. 2, pp. 640–787. Elsevier Science Publishers, North-Holand (1991)

    Google Scholar 

  30. Chatelin, F.: Spectral Approximations of Linear Operators. Academic Press, New York (1983)

    MATH  Google Scholar 

  31. Yang, Y., Sun, L., Bi, H., Li, H.: A note on the residual type a posteriori error estimates for finite element eigenpairs of nonsymmetric elliptic eigenvalue problems. Appl. Numer. Math. 82, 51–67 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Dai, X., Xu, J., Zhou, A.: Convergence and optimal complexity of adaptive finite element eigenvalue computations. Numer. Math. 110, 313–355 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Chen, L.: An integrated finite element method package in MATLAB, Technical Report, University of California at Irvine (2009)

Download references

Acknowledgments

We cordially thank the referees and the editor for their valuable comments that led to the large improvement of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yidu Yang.

Additional information

Project supported by the National Natural Science Foundation of China (Grant No. 11561014).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J., Yang, Y. An Adaptive Finite Element Method for the Transmission Eigenvalue Problem. J Sci Comput 69, 1279–1300 (2016). https://doi.org/10.1007/s10915-016-0234-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0234-5

Keywords

Navigation