Skip to main content
Log in

Full 3D Simulations of Two-Phase Core–Annular Flow in Horizontal Pipe Using Level Set Method

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Simulating core–annular flow is an important task in the oil industry. Many attempts have been made to simulate vertical upflow or downflow. However, in the case of horizontal pipes, simulation is likely to succeed when the effect of gravity is ignored, because the motion of the fluid is no longer axisymmetric. This gravity-ignoring simulation is acceptable when the density of oil is almost similar to that of water, but in most cases, density-matching does not occur in reality. A few attempts have been made to simulate flow in horizontal pipes (Ooms et al. in Phys Fluids 25:032102, 2013), but these attempts used 2D cross-sectional simulation or 3D simulation of a specific moment. This paper discusses several results for core–annular flow in horizontal pipes with gravity effect, using full 3D simulation. Using a level set method, we express the interface of core–annular flow and compare different cases with different parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Bai, R., Chen, K., Joseph, D.D.: Lubricated pipelining: stability of core–annular flow. Part 5. Experiments and comparison with theory. J. Fluid Mech. 240, 97–142 (1992)

    Article  Google Scholar 

  2. Li, J., Renardy, Y.Y., Renardy, M.: Direct simulation of unsteady axisymmetric core–annular flow with high viscosity ratio. J. Fluid. Mech. 391, 123–149 (1998)

    Article  Google Scholar 

  3. Li, J., Renardy, Y.Y., Renardy, M.: A numerical study of periodic disturbances on two-layer Couette flow. Phys. Fluids. 10(12), 3056–3071 (1998)

    Article  Google Scholar 

  4. Ooms, G., Pourquie, M.J.B.M., Beerens, J.C.: On the levitation force in horizontal core–annular flow with a large viscosity ratio and small density ratio. Phys. Fluids 25, 032102 (2013)

    Article  Google Scholar 

  5. Osher, S., Setian, J.A.: Fronts propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  6. Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114, 146–159 (1994)

    Article  MATH  Google Scholar 

  7. Kang, M., Fedkiw, R.P., Liu, X.D.: A boundary condition capturing method for multiphase incompressible flow. J. Sci. Comput. 15, 323–360 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Liu, X.D., Fedkiw, R.P., Kang, M.: A boundary condition capturing method for Poisson’s equation on irregular domains. J. Comput. Phys. 160, 151–178 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kang, M., Shim, H., Osher, S.: Level set based simulations of two-phase oil–water flows in pipes. J. Sci. Comput. 31, 153 (2006)

    Article  MathSciNet  Google Scholar 

  10. Osher, S., Fedikew, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York (2003)

    Book  MATH  Google Scholar 

  11. Chorin, A.J.: Numerical solution of the Navier–Stokes equations. Math. Comput. 22, 745 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fortin, M., Peyret, R., Temam, R.: Résolution numérique des équations de Navier–Stokes pour un fluide incompressible. J. Mécanique 10, 357–390 (1971)

    MathSciNet  MATH  Google Scholar 

  13. Peyret, R., Taylor, T.D.: Computational Methods for Fluid Flow. Springer, New York (1982)

    Google Scholar 

  14. Osher, S., Shu, C.W.: High-order essentially non-oscillatory schemes for Hamilton–Jacobi equation. SIAM J. Numer. Anal. 28, 907–922 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jiang, G.S., Peng, D.: Weighted ENO schemes for Hamilton–Jacobi equations. SIAM J. Sci. Comput. 21, 2126–2143 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys. 83, 32 (1988)

    Article  MathSciNet  Google Scholar 

  17. Brackbill, J.U., Kothe, D.B., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys. 100, 335–354 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Russo, G., Semereka, P.: A remark on computing distance functions. J. Comput. Phys. 163, 51–67 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chéné, A., Min, C., Gibou, F.: Second-order accurate computation of curvatures in a level set framework using novel high-order reinitialization schemes. J. Sci. Comput. 35, 114–131 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Purvis, J.W., Burkhalter, J.E.: Prediction of critical mach number for store configurations. AIAA J. 17, 1170–1177 (1979)

    Article  Google Scholar 

  21. Joseph, D.D., Renardy, Y.Y.: Fundamentals of Two-Fluid Dynamics, Part II, Lubricated Transport, Drops and Miscible Liquids, Springer, New York (1993)

    Google Scholar 

  22. Sotgia, G., Tartarini, P., Stalio, E.: Experimental analysis of flow regimes and pressure drop reduction in oil–water mixtures. Int. J. Multiph. Flow 34, 1161 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2014R/A2A/A10050531).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myungjoo Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, B., Kang, M. Full 3D Simulations of Two-Phase Core–Annular Flow in Horizontal Pipe Using Level Set Method. J Sci Comput 66, 1025–1051 (2016). https://doi.org/10.1007/s10915-015-0053-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0053-0

Keywords

Navigation