Skip to main content
Log in

A Stabilized Crank–Nicolson Mixed Finite Volume Element Formulation for the Non-stationary Incompressible Boussinesq Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

At first, a semi-discrete Crank–Nicolson (CN) formulation with respect to time for the non-stationary incompressible Boussinesq equations is presented. Then, a fully discrete stabilized CN mixed finite volume element (SCNMFVE) formulation based on two local Gauss integrals and parameter-free is established directly from the semi-discrete CN formulation with respect to time. Next, the error estimates for the fully discrete SCNMFVE solutions are derived by means of the standard CN mixed finite element method. Finally, some numerical experiments are presented illustrating that the numerical errors are consistent with theoretical results, the computing load for the fully discrete SCNMFVE formulation are far fewer than that for the stabilized mixed finite volume element (SMFVE) formulation with the first time accuracy, and its accumulation of truncation errors in the computational process is far lesser than that of the SMFVE formulation with the first time accuracy. Thus, the advantage of the fully discrete SCNMFVE formulation for the non-stationary incompressible Boussinesq equations is shown sufficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. An, J., Sun, P., Luo, Z.D., Huang, X.M.: A stabilized fully discrete finite volume element formulation for non-stationary Stokes equations. Math. Numer. Sin. 33(2), 213–224 (2011)

    MathSciNet  MATH  Google Scholar 

  3. Bank, R.E., Rose, D.J.: Some error estimates for the box methods. SIAM J. Numer. Anal. 24(4), 777–787 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blanc, P., Eymerd, R., Herbin, R.: A error estimate for finite volume methods for the Stokes equations on equilateral triangular meshes. Numer. Methods Partial Diff. Equ. 20, 907–918 (2004)

    Article  MATH  Google Scholar 

  5. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991)

    Book  MATH  Google Scholar 

  6. Cai, Z., McCormick, S.: On the accuracy of the finite volume element method for diffusion equations on composite grid. SIAM J. Numer. Anal. 27(3), 636–655 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chatzipantelidis, P., Lazarrov, R.D., Thomée, V.: Error estimates for a finite volume element method for parabolic equations in convex in polygonal domains. Numer. Methods Partial Diff. Equ. 20, 650–674 (2004)

    Article  MATH  Google Scholar 

  8. Chou, S.H., Kwak, D.Y.: A covolume method based on rotated bilinears for the generalized Stokes problem. SIAM J. Numer. Anal. 35, 494–507 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Christon, M.A., Gresho, P.M., Sutton, S.B.: Computational predictability of time-dependent natural convection flows in enclosures (including a benchmark solution). MIT Spec. Issue Therm. Convect. Int. J. Numer. Methods Fluids 40(8), 953–980 (2002). special issue

    Article  Google Scholar 

  10. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  11. He, G.L., He, Y.N., Chen, Z.X.: A penalty finite volume method for the transient Navier–Stokes equations. Appl. Numer. Math. 58, 1583–1613 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. He, Y., Lin, Y., Sun, W.: Stabilized finite element method for the non-stationary Navier–Stokes problem. Discrete Continuous Dyn. Syst. B 6(1), 41–68 (2006)

    MathSciNet  MATH  Google Scholar 

  13. Jones, W.P., Menziest, K.P.: Analysis of the cell-centred finite volume method for the diffusion equation. J. Comput. Phys. 165, 45–68 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, R.H., Chen, Z.Y., Wu, W.: Generalized difference methods for differential equations—numerical analysis of finite volume methods. In: Monographs and Textbooks in Pure and Applied Mathematics, vol. 226. Marcel Dekker Inc., New York (2000)

  15. Li, Y., Li, R.H.: Generalized difference methods on arbitrary quadrilateral networks. J. Comput. Math. 17, 653–672 (1999)

    MathSciNet  MATH  Google Scholar 

  16. Li, H., Luo, Z.D., Sun, P., An, J.: A finite volume element formulation and error analysis for the non-stationary conduction–convection problem. J. Math. Anal. Appl. 396, 864–879 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Luo, Z.D., Li, H., Sun, P.: A fully discrete stabilized mixed finite volume element formulation for the non-stationary conduction–convection problem. J. Math. Anal. Appl. 44(1), 71–85 (2013)

    Article  MathSciNet  Google Scholar 

  18. Luo, Z.D.: The Bases and Applications of Mixed Finite Element Methods. Chinese Science Press, Beijing (2006). in Chinese

    Google Scholar 

  19. Luo, Z.D., Chen, J., Navon, I.M., Zhu, J.: An optimizing reduced PLSMFE formulation for non-stationary conduction–convection problems. Int. J. Numer. Meth. Fluids 60, 409–436 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Luo, Z.D., Xie, Z.H., Chen, J.: A reduced MFE formulation based on POD for the non-stationary conduction–convection problems. Acta Math. Sci. 31(5), 765–1785 (2011)

    MathSciNet  Google Scholar 

  21. Rudin, W.: Functional and Analysis, 2nd edn. McGraw-Hill Companies Inc., New York (1973)

    Google Scholar 

  22. Süli, E.: Convergence of finite volume schemes for Poissons equation on nonuniform meshes. SIAM J. Numer. Anal. 28(5), 1419–1430 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wu, J.H.: The 2D incompressible Boussinesq equations. Peking University Summer School Lecture Notes, Beijing, July 23–August 3 (2012)

  24. Yang, M., Song, H.L.: A postprocessing finite volume method for time-dependent Stokes equations. Appl. Numer. Math. 59, 1922–1932 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ye, X.: On the relationship between finite volume and finite element methods applied to the Stokes equations. Numer. Methods Partial Diff. Equ. 17, 440–453 (2001)

    Article  MATH  Google Scholar 

  26. Zlámal, M.: Finite element methods for nonlinear parabolic equations. RAIRO Analyse numer. 11(1), 93–107 (1977)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Dong Luo.

Additional information

This research was supported by National Science Foundation of China Grant 11271127.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Z.D. A Stabilized Crank–Nicolson Mixed Finite Volume Element Formulation for the Non-stationary Incompressible Boussinesq Equations. J Sci Comput 66, 555–576 (2016). https://doi.org/10.1007/s10915-015-0034-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-015-0034-3

Keywords

Mathematics Subject Classification

Navigation