Skip to main content
Log in

Comparison Between Reduced Basis and Stochastic Collocation Methods for Elliptic Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The stochastic collocation method (Babuška et al. in SIAM J Numer Anal 45(3):1005–1034, 2007; Nobile et al. in SIAM J Numer Anal 46(5):2411–2442, 2008a; SIAM J Numer Anal 46(5):2309–2345, 2008b; Xiu and Hesthaven in SIAM J Sci Comput 27(3):1118–1139, 2005) has recently been applied to stochastic problems that can be transformed into parametric systems. Meanwhile, the reduced basis method (Maday et al. in Comptes Rendus Mathematique 335(3):289–294, 2002; Patera and Rozza in Reduced basis approximation and a posteriori error estimation for parametrized partial differential equations Version 1.0. Copyright MIT, http://augustine.mit.edu, 2007; Rozza et al. in Arch Comput Methods Eng 15(3):229–275, 2008), primarily developed for solving parametric systems, has been recently used to deal with stochastic problems (Boyaval et al. in Comput Methods Appl Mech Eng 198(41–44):3187–3206, 2009; Arch Comput Methods Eng 17:435–454, 2010). In this work, we aim at comparing the performance of the two methods when applied to the solution of linear stochastic elliptic problems. Two important comparison criteria are considered: (1), convergence results of the approximation error; (2), computational costs for both offline construction and online evaluation. Numerical experiments are performed for problems from low dimensions \(O(1)\) to moderate dimensions \(O(10)\) and to high dimensions \(O(100)\). The main result stemming from our comparison is that the reduced basis method converges better in theory and faster in practice than the stochastic collocation method for smooth problems, and is more suitable for large scale and high dimensional stochastic problems when considering computational costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Babuška, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45(3), 1005–1034 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barrault, M., Maday, Y., Nguyen, N.C., Patera, A.T.: An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations. Comptes Rendus Mathematique, Analyse Numérique 339(9), 667–672 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Beck, J., Nobile, F., Tamellini, L., Tempone, R.: Stochastic spectral Galerkin and collocation methods for PDEs with random coefficients: A numerical comparison. In: Spectral and High Order Methods for Partial Differential Equations, vol. 76, pp. 43–62. Springer, Berlin (2011)

  4. Beck, J., Tempone, R., Nobile, F., Tamellini, L.: On the optimal polynomial approximation of stochastic PDEs by Galerkin and collocation methods. Math. Models Methods Appl. Sci. 22(09), (2012). doi:10.1142/S0218202512500236

  5. Binev, P., Cohen, A., Dahmen, W., DeVore, R., Petrova, G., Wojtaszczyk, P.: Convergence rates for greedy algorithms in reduced basis methods. SIAM J. Math. Anal. 43(3), 1457–1472 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Boyaval, S., Le Bris, C., Lelièvre, T., Maday, Y., Nguyen, N.C., Patera, A.T.: Reduced basis techniques for stochastic problems. Arch. Comput. Methods Eng. 17, 435–454 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Boyaval, S., LeBris, C., Maday, Y., Nguyen, N.C., Patera, A.T.: A reduced basis approach for variational problems with stochastic parameters: application to heat conduction with variable Robin coefficient. Comput. Methods Appl. Mech. Eng. 198(41–44), 3187–3206 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bungartz, H.J., Griebel, M.: Sparse grids. Acta Numerica 13(1), 147–269 (2004)

    Article  MathSciNet  Google Scholar 

  9. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, Berlin (2006)

    Google Scholar 

  10. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods: Evolution to Complex Domains and Applications to Fluid Dynamics. Springer, Berlin (2007)

    Google Scholar 

  11. Chen, P., Quarteroni, A.: Accurate and efficient evaluation of failure probability for partial different equations with random input data. EPFL, MATHICSE Report 13, submitted (2013)

  12. Chen, P., Quarteroni, A., Rozza, G.: A weighted empirical interpolation method: A priori convergence analysis and applications. EPFL, MATHICSE Report 05, submitted (2013)

  13. Chen, P., Quarteroni, A., Rozza, G.: A weighted reduced basis method for elliptic partial differential equations with random input data. EPFL, MATHICSE Report 04, submitted (2013)

  14. Chen, Y., Hesthaven, J.S., Maday, Y., Rodríguez, J.: Certified reduced basis methods and output bounds for the harmonic Maxwell’s equations. SIAM J. Sci. Comput. 32(2), 970–996 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Cohen, A., DeVore, R., Schwab, C.: Convergence rates of best N-term Galerkin approximations for a class of elliptic SPDEs. Found. Comput. Math. 10(6), 615–646 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Evans, L.C.: Partial Differential Equations, Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (2009)

    Google Scholar 

  17. Foo, J., Wan, X., Karniadakis, G.E.: The multi-element probabilistic collocation method (ME-PCM): error analysis and applications. J. Comput. Phys. 227(22), 9572–9595 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach. Dover Civil and Mechanical Engineering, Courier Dover Publications, New York (2003)

    Google Scholar 

  19. Grepl, M.A., Maday, Y., Nguyen, N.C., Patera, A.T.: Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. ESAIM Math. Model. Numer. Anal. 41(03), 575–605 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Grepl, M.A., Patera, A.T.: A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations. ESAIM Math. Model. Numer. Anal. 39(01), 157–181 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Griebel, M.: Sparse grids and related approximation schemes for higher dimensional problems (2005)

  22. Hu, X., Lin, G., Hou, T.Y., Yan, P.: An adaptive ANOVA-based data-driven stochastic method for elliptic pde with random coefficients. Technical Report, Applied and Computational Mathematics, California Institute of Technology (2012)

  23. Huynh, D.B.P., Rozza, G., Sen, S., Patera, A.T.: A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants. Comptes Rendus Mathematique, Analyse Numérique 345(8), 473–478 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Klimke, A.: Uncertainty modeling using fuzzy arithmetic and sparse grids. Universität Stuttgart. PhD thesis, Universität Stuttgart (2006)

  25. Klimke, A., Willner, K., Wohlmuth, B.: Uncertainty modeling using fuzzy arithmetic based on sparse grids: applications to dynamic systems. Int. J. Uncertain. Fuzz. Knowl. Syst. 12(6), 745–759 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  26. Lassila, T., Quarteroni, A., Rozza, G.: A reduced basis model with parametric coupling for fluid–structure interaction problems. SIAM J. Sci. Comput. 34(2), 1187–1213 (2012)

    Article  MathSciNet  Google Scholar 

  27. Ma, X., Zabaras, N.: An adaptive hierarchical sparse grid collocation algorithm for the solution of stochastic differential equations. J. Comput. Phys. 228(8), 3084–3113 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  28. Maday, Y., Nguyen, N.C., Patera, A.T., Pau, G.S.H.: A general, multipurpose interpolation procedure: the magic points. Commun. Pure Appl. Anal. 8(1), 383–404 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  29. Maday, Y., Patera, A.T., Turinici, G.: Global a priori convergence theory for reduced-basis approximations of single-parameter symmetric coercive elliptic partial differential equations. Comptes Rendus Mathematique 335(3), 289–294 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  30. McRae, G.J., Tatang, M.A., et al.: Direct incorporation of uncertainty in chemical and environmental engineering systems. PhD thesis, Massachusetts Institute of Technology (1995)

  31. Nobile, F., Tempone, R., Webster, C.G.: An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2411–2442 (2008a)

    Article  MATH  MathSciNet  Google Scholar 

  32. Nobile, F., Tempone, R., Webster, C.G.: A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2309–2345 (2008b)

    Article  MATH  MathSciNet  Google Scholar 

  33. Nouy, A.: Recent developments in spectral stochastic methods for the numerical solution of stochastic partial differential equations. Arch. Comput. Methods Eng. 16(3), 251–285 (2009)

    Article  MathSciNet  Google Scholar 

  34. Patera, A.T., Rozza, G.: Reduced basis approximation and a posteriori error estimation for parametrized partial differential equations Version 1.0. Copyright MIT, http://augustine.mit.edu (2007)

  35. Quarteroni, A.: Numerical Models for Differential Problems, vol. 2. Springer, Italy (2009)

    Book  MATH  Google Scholar 

  36. Quarteroni, A., Rozza, G.: Numerical solution of parametrized Navier–Stokes equations by reduced basis methods. Numer. Methods Part. Diff. Eqs. 23(4), 923–948 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  37. Quarteroni, A., Rozza, G., Manzoni, A.: Certified reduced basis approximation for parametrized partial differential equations and applications. J. Math. Ind. 1(1), 1–49 (2011)

    Article  MathSciNet  Google Scholar 

  38. Quarteroni, A., Sacco, R., Saleri, F.: Numerical Mathematics. Springer, Berlin (2007)

    MATH  Google Scholar 

  39. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, Berlin (1994)

    MATH  Google Scholar 

  40. Rozza, G.: Shape design by optimal flow control and reduced basis techniques: applications to bypass configurations in haemodynamics. PhD thesis, EPFL (2005)

  41. Rozza, G., Huynh, D.B.P., Patera, A.T.: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Methods Eng. 15(3), 229–275 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  42. Schwab, C., Todor, R.A.: Karhunen–Loève approximation of random fields by generalized fast multipole methods. J. Comput. Phys. 217(1), 100–122 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  43. Trefethen, L.N.: Is Gauss quadrature better than Clenshaw–Curtis? SIAM Rev. 50(1), 67–87 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  44. Xiu, D., Hesthaven, J.S.: High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput. 27(3), 1118–1139 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  45. Xiu, D., Karniadakis, G.E.: The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619–644 (2003)

    Article  MathSciNet  Google Scholar 

  46. Zhang, S.: Efficient greedy algorithms for successive constraints methods with high-dimensional parameters. Brown Division of Applied Math Scientific Computing Tech Report, 23 (2011)

Download references

Acknowledgments

We acknowledge the use of the Matlab packages rbMIT developed by the group of Prof. Anthony Patera in MIT http://augustine.mit.edu/methodology/methodology_rbMIT_System.htm, MLife previously developed by Prof. Fausto Saleri from MOX, Politecnico di Milano and spinterp by Dr. Andreas Klimke from Universität Stuttgart http://www.ians.uni-stuttgart.de/spinterp/. The authors thank Prof. Fabio Nobile for several helpful insights and the numerical verification by the package sparse grid toolkit http://www2.mate.polimi.it:8080/NUMQUES/codes co-developed with Dr. Lorenzo Tamellini and the anonymous referees for the improvement of the presentation of the work. This work is partially supported by Swiss National Science Foundation under Grant No. \(200021\_141034\).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluigi Rozza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, P., Quarteroni, A. & Rozza, G. Comparison Between Reduced Basis and Stochastic Collocation Methods for Elliptic Problems. J Sci Comput 59, 187–216 (2014). https://doi.org/10.1007/s10915-013-9764-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-013-9764-2

Keywords

Navigation