Skip to main content
Log in

A Dynamic Penalty or Projection Method for Incompressible Fluids

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In a previous work (Angot et al. in J. Comput. Appl. Math. 226:228–245, 2009), some penalty–projection methods have been tested for the numerical analysis of the Navier-Stokes equations. The purpose of this study is to introduce a variant of the penalty–projection method which allows us to compute the solutions faster than by using the previous solver. This new variant combines dynamically and alternatively a penalty procedure and a projection procedure according to the size of the divergence of the velocity. In other words, this study aims to prove that it is possible to project the intermediate velocity, computed by the first step of the penalty–projection method, only if its divergence is larger than a specified threshold. Theoretical estimates for the new method are given, which are in accordance with the numerical results provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Angot, Ph., Caltagirone, J.-P., Fabrie, P.: Vector penalty–projection methods for the solution of unsteady incompressible flows. In: 5th International Symposium on Finite Volumes for Complex Applications. Hermes Science (2008)

    Google Scholar 

  2. Angot, Ph., Févrière, C., Laminie, J., Poullet, P.: On the penalty–projection method for the Navier–Stokes equations with the MAC mesh. J. Comput. Appl. Math. 226, 228–245 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chorin, A.J.: Numerical solution of the Navier–Stokes equations. Math. Comput. 22, 745–762 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  4. Févrière, C., Angot, Ph., Poullet, P.: A penalty-projection method using staggered grids for incompressible flows. Lect. Notes Comput. Sci. 4818, 192–200 (2008)

    Article  Google Scholar 

  5. Fortin, M., Glowinski, R.: Augmented Lagrangian Methods, Applications to the Numerical Solution of Boundary Value Problems. North-Holland, Amsterdam (1983)

    MATH  Google Scholar 

  6. Griffith, B.E.: An accurate and efficient method for the incompressible Navier–Stokes equations using the projection method as a preconditioner. J. Comput. Phys. 228(20), 7565–7595 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. Guermond, J.L., Minev, P., Shen, J.: An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 195, 6011–6045 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Heywood, J.G., Rannacher, R.: Finite element approximation of the nonstationary Navier-Stokes problem. I. Regularity of solutions and second order error estimates for spatial discretization. SIAM J. Numer. Anal. 19, 275–311 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  9. Jobelin, M., Lapuerta, C., Latché, J.-C., Angot, Ph., Piar, B.: A finite element penalty-projection method for incompressible flows. J. Comput. Phys. 217, 502–518 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Jobelin, M., Piar, B., Angot, Ph., Latché, J.-C.: Une méthode de pénalité–projection pour les écoulements dilatables. Eur. J. Comput. Mech. 17(4), 453–480 (2008)

    Google Scholar 

  11. Ni, M.-J.: Consistent projection methods for variable density incompressible Navier–Stokes equations with continuous surface forces on a rectangular collocated mesh. J. Comput. Phys. 228(18), 6938–6956 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Prohl, A.: On pressure approximation via projection methods for nonstationary incompressible Navier–Stokes equations. SIAM J. Numer. Anal. 47(1), 158–180 (2008)

    Article  MathSciNet  Google Scholar 

  13. Shen, J.: On error estimates of some higher order projection and penalty-projection methods for Navier–Stokes equations. Numer. Math. 62, 49–73 (1992)

    Article  MathSciNet  Google Scholar 

  14. Shen, J.: On error estimates of projection methods for Navier–Stokes equations: second-order schemes. Math. Comput. 65(215), 1039–1065 (1996)

    Article  MATH  Google Scholar 

  15. Sun, H., He, Y., Feng, X.: On error estimates of the pressure-correction projection methods for the time-dependent Navier–Stokes equations. Int. J. Numer. Anal. Model. 8(1), 70–85 (2011)

    MATH  MathSciNet  Google Scholar 

  16. Temam, R.: Sur l’approximation par la méthode des pas fractionnaires. Arch. Ration. Mech. Anal. 32, 377–385 (1969)

    Article  Google Scholar 

  17. Temam, R.: Navier–Stokes Equations. North-Holland, Amsterdam (1984). Revised version

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Poullet.

Additional information

The authors are pleased to acknowledge the “Centre Commun de Calcul Intensif de l’Université des Antilles et de la Guyane” where the comptutational tests have been performed (see http://www.univ-ag.fr/c3i).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laminie, J., Poullet, P. A Dynamic Penalty or Projection Method for Incompressible Fluids. J Sci Comput 50, 213–234 (2012). https://doi.org/10.1007/s10915-011-9480-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-011-9480-8

Keywords

Navigation