Skip to main content
Log in

Edge Detection by Adaptive Splitting

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper we propose an algorithm (EDAS-d) to approximate the jump discontinuity set of functions defined on subsets of ℝd. We have limited our study to the 1D (EDAS-1) and 2D (EDAS-2) versions of the algorithm. Theoretical and computational results prove its effectiveness in the case of piecewise continuous 1D functions and piecewise constant 2D functions. The algorithm is based on adaptive splitting of the domain of the function guided by the value of an average integral. EDAS-d exhibits a number of attractive features: accurate determination of the jump points, fast processing, absence of oscillatory behavior, precise determination of the magnitude of the jumps, and ability to differentiate between real jumps (discontinuities) and steep gradients. Moreover, low-dimensional versions of EDAS-d can be used for solving higher dimensional problems. Computational experiments also show that EDAS-d can be applied to solve some problems involving general piecewise continuous functions. EDAS-1 and EDAS-2 have been used to determine edges in 2D-images. The results are quite satisfactory for practical purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alvarez, L., Lions, P.L., Morel, J.M.: Image selective smoothing and edge detection by nonlinear diffusion II. SIAM J. Numer. Anal. 29, 845–866 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  2. Archibald, R., Gelb, A., Gottlieb, S., Ryan, J.: One-sided post-processing for the discontinuous Galerkin method using ENO type stencil choosing and the local edge detection method. J. Sci. Comput. 28, 167–190 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Archibald, R., Gelb, A., Yoon, J.: Polynomial fitting for edge detection in irregularly sampled signals and images. SIAM J. Numer. Anal. 43, 259–279 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bänsch, E., Mikula, K.: A coarsening finite element in image selective smoothing. Comput. Vis. Sci. 1, 53–61 (1997)

    Article  MATH  Google Scholar 

  5. Bänsch, E., Mikula, K.: Adaptivity in 3D image processing. Comput. Vis. Sci. 4, 21–30 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Berntsen, J., Espelid, T.O.: Error estimation in automatic quadrature routines. ACM Trans. Math. Softw. 17, 233–252 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bliss, A., Su, F.E.: Lower bounds for simplicial covers and triangulations of cubes. Discrete Comput. Geom. 33, 669–686 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bosnjak, A., Montilla, G., Villegas, R., Jara, I.: 3D segmentation with an application of level set-method using MRI volumes for image guided surgery. In: Proceedings of the 29th Annual International Conference of the IEEE EMBS, pp. 5263–5266, Lyon, France, August 23–26 (2007)

  9. Catté, F., Lions, P.L., Morel, J.M., Coll, T.: Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal. 29, 182–193 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chen, M.-H., Chin, R.T.: Partial smoothing splines for noisy + boundaries with corners. IEEE Trans. Pattern Anal. Mach. Intell. 15, 1208–1216 (1993)

    Article  Google Scholar 

  11. Chen, G., Yang, Y.H.: Edge detection by regularized cubic B-spline fitting. IEEE Trans. Syst. Man Cybern. 25, 636–643 (1995)

    Article  Google Scholar 

  12. Fujioka, H., Kano, H.: Extrema detection of optimal smoothing splines with application to edge detection problem. In: Proceedings of the 32nd Annual Conference on Industrial Electronics (IECON 2006), pp. 3294–3299. IEEE, New York (2006)

    Chapter  Google Scholar 

  13. Gamelin, Th.W., Greene, R.E.: Introduction to Topology. Dover, New York, Mineola (1999)

    MATH  Google Scholar 

  14. Gelb, A., Tadmor, E.: Detection of edges in spectral data. Appl. Comput. Harmon. Anal. 7, 101–135 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gelb, A., Tadmor, E.: Detection of edges in spectral data II. Nonlinear enhancement. SIAM J. Numer. Anal. 38, 1389–1408 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gelb, A., Tadmor, E.: Adaptive edge detectors for piecewise smooth data based on the minmod limiter. J. Sci. Comput. 28, 279–306 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gelb, A., Cates, D.: Detection of edges in spectral data III-refinement of the concentration method. J. Sci. Comput. 36, 1–43 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gelb, A., Cates, D.: Segmentation of images from Fourier spectral data. Commun. Comput. Phys. 5, 326–34 (2009)

    MathSciNet  Google Scholar 

  19. Gevers, T., Smeulders, A.W.M.: Combining region splitting and edge detection through guided Delaunay image subdivisions. In: IEEE Proceedings of CVPR, pp. 1021–1026 (1997)

  20. González, R.C., Woods, R.E., Eddins, S.L.: Digital Image Processing using MATLAB. Prentice Hall, New York (2004)

    Google Scholar 

  21. Gottlieb, D., Shu, Ch.-W.: On the Gibbs phenomenon and its resolution. SIAM Rev. 39, 644–668 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  22. Grundmann, A., Möller, H.M.: Invariant integration formulas for the n-simplex by combinatorial methods. SIAM J. Numer. Anal. 15, 282–290 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  23. Guan, X., Guan, Z.: Edge detection of high resolution remote sensing imaginary using wavelet. In: Proceedings of the International Conference on Info-tech and Info-net (ICII 2001), vol. 1, pp. 302–307. IEEE, New York (2001)

    Chapter  Google Scholar 

  24. Horowitz, S.L., Pavlidis, T.: Picture segmentation by a tree traversal algorithm. J. ACM 23, 368–388 (1975)

    Article  Google Scholar 

  25. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Int. J. Comput. Vis. 1, 321–331 (1988)

    Article  Google Scholar 

  26. Krylov, V.I.: Approximate Calculation of Integrals. Dover, New York (2005)

    MATH  Google Scholar 

  27. Lizier, M.A.S., Martins, D.C. Jr., Cuadros-Vargas, A.J., Cesar, R.M. Jr., Nonato, L.G.: Generated segmented meshes from textured color images. J. Vis. Commun. Image R. 20, 190–203 (2009)

    Article  Google Scholar 

  28. Llanas, B., Lantarón, S., Sáinz, F.J.: Constructive approximation of discontinuous functions by neural networks. Neural Process. Lett. 27, 209–226 (2008)

    Article  Google Scholar 

  29. Llanas, B., Sáinz, F.J.: Fast training of neural trees by adaptive splitting based on cubature. Neurocomputing 71, 3387–3408 (2008)

    Article  Google Scholar 

  30. Meinhardt, E., Zacur, E., Frangi, A.F., Caselles, V.: 3D edge detection by selection of level surface patches. J. Math. Imaging Vis. 34, 1–16 (2009)

    Article  MathSciNet  Google Scholar 

  31. Orden, D., Santos, F.: Asymptotically efficient triangulations of the d-cube. Discrete Comput. Geom. 30, 509–528 (2003)

    MATH  MathSciNet  Google Scholar 

  32. Paragios, N., Chen, Y., Faugeras, O. (eds.): Handbook of Mathematical Models in Computer Vision. Springer, Berlin (2006)

    Google Scholar 

  33. Pavlidis, T., Liow, Y.-T.: Integrating region growing and edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 12, 225–233 (1990)

    Article  Google Scholar 

  34. Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. In: Proceedings of the IEEE Workshop on Computer Vision, Miami, pp. 16–22 (1987)

  35. Preußer, T., Rumpf, M.: An adaptive finite element method for large scale image processing. J. Vis. Commun. Image R. 11, 183–195 (2000)

    Article  Google Scholar 

  36. Rumpf, M., Voigt, A., Berkels, B., Rätz, A.: Extracting grain boundaries and macroscopic deformations from images on atomic scale. J. Sci. Comput. 35, 1–23 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  37. Subbotin, Y.N.: Error of the approximation by interpolation polynomials of small degrees on n-simplices. Math. Notes 48, 1030–1037 (1990)

    MATH  MathSciNet  Google Scholar 

  38. Tang, Y.Y., Yang, L., Liu, J.: Quadratic spline wavelet approach to automatic extraction of baselines from document images. In: Proceedings of the Fourth International Conference on Document Analysis and Recognition, vol. 2, pp. 693–696. IEEE, New York (1997)

    Chapter  Google Scholar 

  39. Wu, X.: Adaptive split-and-merge segmentation based on piecewise least-square approximation. IEEE Trans. Pattern Anal. Mach. Intell. 15, 808–815 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernardo Llanas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Llanas, B., Lantarón, S. Edge Detection by Adaptive Splitting. J Sci Comput 46, 485–518 (2011). https://doi.org/10.1007/s10915-010-9416-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-010-9416-8

Keywords

Navigation