Skip to main content

Advertisement

Log in

Tooth Eruption Sequences in Cervids and the Effect of Morphology, Life History, and Phylogeny

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

Tooth eruption sequences vary in a non-random way among mammalian species. Several variables have been linked to this, including tooth and jaw shape, adaptations to diet, and food processing. Likewise, changes in eruption patterns correlate with the speed of postnatal growth in some groups, the Schultz’s Rule pattern. Here, the eruption pattern of the permanent dentition in lower jaws from different cervid species have been investigated to discern the effect of these factors and phylogeny as well as to reconstruct the ancestral tooth eruption sequence of cervids. In ruminants, the different patterns of emergence of permanent teeth seem to be best explained by phylogeny. The degree of hypsodonty, age of first molar eruption, and life history parameters such as longevity and age of female sexual maturity do not explain the observed sequential differences in eruption patterns. The Parsimov-based analysis for the ancestral state resulted in a tooth eruption sequence of m1 – m2 – i1 – i2 – i3 – c – m3 – (ppp) for Cervidae; a pattern recorded in Odocoileus, Capreolus, and Hydropotes. The eruption pattern of Caenomeryx filholi, from the Oligocene of Gaimersheim, is identical to the result of the Parsimov-based analysis except for the presence of a first premolar, a tooth lost in cervids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ancrenaz M, Delhomme A (1997) Teeth eruption as a means of age determination in captive Arabian oryx, Oryx leucoryx (Bovidae, Hippotraginae). Mammalia 61:135–138. doi: 10.1515/mamm.1997.61.1.109

    Google Scholar 

  • Asher RJ, Lehmann T (2008) Dental eruption in afrotherian mammals. BMC Biol 6:1–11. doi:10.1186/1741-7007-6-14

    Article  Google Scholar 

  • Asher RJ, Olbricht G (2009) Dental ontogeny in Macroscelides proboscideus (Afrotheria) and Erinaceus europaeus (Lipotyphla). J Mammal Evol 16:99–115. doi: 10.1007/s10914-009-9105-2

    Article  Google Scholar 

  • Attwell CAM (1980) Age determination of the blue wildebeest Connochaetes taurinus in Zululand. S Afr J Zool 15:121–130

    Article  Google Scholar 

  • Bannikov AG, Zhirnov LV, Lebedeva LS, Fandeev AA (1961) Biologiya saigaka [Biology of the Saiga Antelope]. Selskokhozyaistvennaya Literatura, Moscow

    Google Scholar 

  • Barbanti Duarte JM, González S, Maldonado JE (2008) The surprising evolutionary history of South American deer. Mol Phylogenet Evol 49:17–22. doi: 10.1016/j.ympev.2008.07.009

    Article  Google Scholar 

  • Bastl K, Nagel D (2014) First evidence of the tooth eruption sequence of the upper jaw in Hyaenodon (Hyaenodontidae, Mammalia) and new information on the ontogenetic development of its dentition. Palaeontol Z 88:481–494. doi: 10.1007/s12542-013-0207-z

    Article  Google Scholar 

  • Bastl K, Morlo M, Nagel D, Heizmann E (2011) Differences in the tooth eruption sequence in Hyaenodon (‘Creodonta’: Mammalia) and implications for the systematics of the genus. J Vertebr Paleontol 31:181–192. doi: 10.1080/02724634.2011.540052

    Article  Google Scholar 

  • Bello A, Sonfada ML, Umar AA, Umaru MA, Shehu SA, Hena SA, Onu JE, Fatima OO (2013). Age estimation of camel in Nigeria using rostral dentition. Sci J Anim Sci 2:9–14

    Google Scholar 

  • Bianchini JJ, Delupi LH (1993) Determinación de la edad en ciervos de las pampas (Odocoileus bezoarticus) mediante el estudio comparado del desarrollo y desgaste de los dientes. PHYSIS (Buenos Aires), Secc. C, 48:27–40

    Google Scholar 

  • Bibi F (2013) A multi-calibrated mitochondrial phylogeny of extant Bovidae (Artiodactyla, Ruminantia) and the importance of the fossil record to systematics. BMC Evol Biol 13:166. doi: 10.1186/1471-2148-13-166

    Article  PubMed  PubMed Central  Google Scholar 

  • Brokx PA (1972) Age determination of Venezuelan White-Tailed deer. J Wildl Manage 36:1060–1067. doi: 10.2307/3799233

    Article  Google Scholar 

  • Byrd KE (1981) Sequences of dental ontogeny and callitrichid taxonomy. Primates 22:103–118. doi: 10.1007/BF02382561

    Article  Google Scholar 

  • Caughley G (1965) Horn rings and tooth eruption as criteria of age in the Himalayan thar, Hemitragus jemlahicus. New Zealand J Sci 8:333–351

    Google Scholar 

  • Chapman DI, Chapman NG, Colles CM (1985). Tooth eruption in Reeves’ muntjac (Muntiacus reevesi) and its use as a method of age estimates (Mammalia: Cervidae). J Zool 205:205–221. doi: 10.1111/j.1469-7998.1985.tb03529.x

    Article  Google Scholar 

  • Ciancio MR, Castro MC, Galliari FC, Carlini AA, Asher RJ (2012) Evolutionary implications of dental eruption in Dasypus (Xenarthra). J Mammal Evol 19:1–8. doi: 10.1007/s10914-011-9177-7

    Article  Google Scholar 

  • de Vos J (1984) The Endemic Pleistocene Deer of Crete. North-Holland Publishing Company, Amsterdam

    Google Scholar 

  • Dirks W (2003) Effect of diet on dental development in four species of catarrhine primates. Am J Primatol 61:29–40. doi: 10.1002/ajp.10106

    Article  PubMed  Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1–15

    Article  Google Scholar 

  • Forasiepi AM, Sánchez-Villagra MR (2014) Heterochrony, dental ontogenetic diversity, and the circumvention of constraints in marsupial mammals and extinct relatives. Paleobiology 40:222–237. doi: 10.1666/13034

    Article  Google Scholar 

  • Geiger M, Forasiepi AM, Koyabu D, Sánchez-Villagra MR (2014) Heterochrony and post-natal growth in mammals—an examination of growth plates in limbs. J Evol Biol 27:98–115. doi: 10.1111/jeb.12279

    Article  CAS  PubMed  Google Scholar 

  • Germain D, Laurin M (2009) Evolution of ossification sequences in salamanders and urodele origins assessed through event-pairing and new methods. Evol Dev 11:170–190. doi: 10.1111/j.1525-142X.2009.00318.x.

    Article  PubMed  Google Scholar 

  • Gilbert C, Ropiquet A, Hassanin A (2006) Mitochondrial and nuclear phylogenies of Cervidae (Mammalia, Ruminantia): systematics, morphology, and biogeography. Mol Phylogenet Evol 40:101–117. doi:10.1016/j.ympev.2006.02.017

    Article  CAS  PubMed  Google Scholar 

  • Gingerich PD, Smith BH (2010) Premolar development and eruption in the early Eocene adapoids Cantius ralstoni and Cantius abditus (Mammalia, Primates). Contrib Mus Paleontol Univ Mich 32:41–47

    Google Scholar 

  • Godfrey LR, Samonds KE, Jungers WL, Sutherland MR (2001) Teeth, brains and primate life histories. Am J Phys Anthropol 114:192–214. doi: 10.1002/1096-8644(200103)114:3<192::AID-AJPA1020>3.0.CO;2-Q

    Article  CAS  PubMed  Google Scholar 

  • Godfrey LR, Samonds KE, Wright PC, King SJ (2005) Schultz’s unruly rule: dental development sequences and schedules in small-bodied, folivorous lemurs. Folia Primatol 76:77–99. doi: 10.1159/000083615

    Article  PubMed  Google Scholar 

  • Greenwald NS (1988) Patterns of tooth eruption and replacement in multituberculate mammals. J Vertebr Paleontol 8:265–277. doi: 10.1080/02724634.1988.10011709

    Article  Google Scholar 

  • Grobler JH (1980) Body growth and age determination of the sable Hippotragus niger niger (Harris, 1838). Koedoe 23:131–156. doi: 10.4102/koedoe.v23i1.641

    Google Scholar 

  • Guthrie EH, Frost FR (2011) Pattern and pace of dental eruption in Tarsius. Am J Phys Anthropol 145:446–451. doi: 10.1002/ajpa.21525

    Article  PubMed  Google Scholar 

  • Habermehl K-H (1975) Altersbestimmung bei Haus- und Labortieren, 2nd edn. Verlag Paul Parey, Hamburg

    Google Scholar 

  • Habermehl K-H (1985) Altersbestimmung bei Wild- und Pelztieren – Möglichkeiten und Methoden – ein praktischer Leitfaden für Jäger, Biologen und Tierärzte, 2nd edn. Verlag Paul Parey, Hamburg

    Google Scholar 

  • Hall-Martin AJ (1976) Dentition and age determination of the giraffe Giraffa camelopardalis. J Zool 180:263–289. doi: 10.1111/j.1469-7998.1976.tb04678.x

    Article  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9 pp

  • Harrison LB, Larsson HC (2008) Estimating evolution of temporal sequence changes: a practical approach to inferring ancestral developmental sequences and sequence heterochrony. Syst Biol 57:378–387. doi: 10.1080/10635150802164421

    Article  PubMed  Google Scholar 

  • Hellmund M (2013) Odontological and osteological investigations on propalaeotheriids (Mammalia, Equidae) from the Eocene Geiseltal Fossillagerstätte (Central Germany)—a full range of extraordinary phenomena. Neues Jahrb Geol P-A 267:127–154. doi: 10.1127/0077-7749/2013/0300

    Google Scholar 

  • Hemming JE (1969) Cemental deposition, tooth succession, and horn development as criteria of age in Dall sheep. J Wildl Manage 33:552–558. doi: 10.2307/3799377

    Article  Google Scholar 

  • Henderson E (2007) Platyrrhine dental eruption sequences. Am J Phys Anthropol 134:226–239. doi: 10.1002/ajpa.20658

    Article  PubMed  Google Scholar 

  • Henrichson P, Grue H (1980) Age criteria in the muskox (Ovibos moschatus) from Greenland. Danish Rev Game Biol 11:3–18

    Google Scholar 

  • Hernández Fernández M, Vrba ES (2005) A complete estimate of the phylogenetic relationships in Ruminantia: a dated species-level supertree of the extant ruminants. Biol Rev 80:269–302. doi: 10.1017/S1464793104006670

    Article  PubMed  Google Scholar 

  • Hillson S (2005) Teeth, 2nd edn. Cambridge Manuals in Archaeology. Cambridge University Press, New York

    Google Scholar 

  • Isler K, van Schaik CP (2012) Allomaternal care, life history and brain size evolution in mammals. J Hum Evol 63:52–63. doi:10.1016/j.jhevol.2012.03.009

    Article  PubMed  Google Scholar 

  • Janis CM (1988) An estimation of tooth volume and hypsodonty indices in ungulate mammals, and the correlation of these factors with dietary preference. In: Russell DE, Santoro J-P, Sigogneau-Russell D (eds) Teeth Revisited: Proceedings of the VIIth International Symposium on Dental Morphology. Mémoires du Muséum national d’Histoire naturelle, Science de la Terre (Série C), Tome 53, Éditions du Muséum national d’Histoire naturelle, Paris, pp 367–387

  • Jeffery RCV, Hanks J (1981) Age determination of eland Taurotragus oryx (Pallas, 1766) in the Natal highveld. S Afr J Zool 16:113–122

    Article  Google Scholar 

  • Jogahara YO, Natori M (2012) Dental eruption sequence and eruption times in Erythrocebus pata. Primates 53:193–204. doi: 10.1007/s10329-011-0286-y

    Article  PubMed  Google Scholar 

  • Jordana X, Marín-Moratalla N, DeMiguel D, Kaiser TM, Köhler M (2012) Evidence of correlated evolution of hypsodonty and exceptional longevity in endemic insular mammals. Proc Roy Soc B 279:3339–3346. doi: 10.1098/rspb.2012.0689

    Article  Google Scholar 

  • Jordana X, Marín-Moratalla N, Moncunill-Solé B, Bover P, Alcover JA, Köhler M (2013) First fossil evidence for the advance of replacement teeth coupled with life history evolution along an anagenetic mammalian lineage. PLoS ONE 8(7): e70743. doi: 10.1371/journal.pone.0070743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerr MA, Roth HH (1970) Studies on the agricultural utilization of semi-domesticated eland (Taurotragus oryx) in Rhodesia. Rhod J Agr Res 8:149–155

    Google Scholar 

  • Kirkpatrick RD, Sowls LK (1962) Age determination of the collared peccary by the tooth-replacement pattern. J Wildl Manage 26:214–217. doi: 10.2307/3798608

    Article  Google Scholar 

  • Koyabu D, Werneburg I, Morimoto M, Zollikofer CPE, Forasiepi AM, Endo H, Kimura J, Ohdachi SD, Truong Son N, Sánchez-Villagra MR (2014) Mammalian skull heterochrony reveals modular evolution and a link between cranial development and brain size. Nat Commun 5:3625. doi:10.1038/ncomms4625

    Article  PubMed  PubMed Central  Google Scholar 

  • Lalueza-Fox C, Castresana J, Sampietro L, Marquès-Bonet T, Alcover JA, Bertranpetit J (2005) Molecular dating of caprines using ancient DNA sequences of Myotragus balearicus, an extinct endemic Balearic mammal. BMC Evol Biol 5:70. doi:10.1186/1471-2148-5-70

    Article  PubMed  PubMed Central  Google Scholar 

  • Laurin M, Germain D (2011) Developmental characters in phylogenetic inference and their absolute timing information. Syst Biol 60:630–644. doi: 10.1093/sysbio/syr024

    Article  PubMed  Google Scholar 

  • Lubinski PM (2001) Estimating age and season of death of pronghorn antelope (Antilocapra americana Ord) by means of tooth eruption and wear. Int J Osteoarchaeol 11:218–230. doi: 10.1002/oa.536

    Article  Google Scholar 

  • Luckett WP, Wooley PA (1996) Ontogeny and homology of the dentition in dasyurid marsupials: development in Sminthopsis virginiae. J Mammal Evol 3:327–364. doi: 10.1007/BF02077449

    Article  Google Scholar 

  • Luo Z-X, Kielan-Jaworowska Z, Cifelli RL (2004) Evolution of dental replacement in mammals. Bull Carnegie Mus Nat Hist 36:159–175. doi: 10.2992/0145-9058(2004)36[159:EODRIM]2.0.CO;2

    Article  Google Scholar 

  • Maddison WP (1991) Squared-change parsimony reconstructions of ancestral states for continuous-valued characters on a phylogenetic tree. Syst Zool 40:304–314. doi: 10.2307/2992324

    Article  Google Scholar 

  • Maddison WP, Maddison DR (2011) Mesquite: a modular system for evolutionary analysis. Version 3.01

    Google Scholar 

  • Marín-Moratalla N, Jordana X, García-Martínez R, Köhler M (2011) Tracing the evolution of fitness components in fossil bovids under different selective regimes. CR Palevol 10:469–478. doi: 10.1016/j.crpv.2011.03.007

    Article  Google Scholar 

  • Matschke GH (1967) Aging European wild hogs by dentition. J Wildl Manage 31:109–113. doi: 10.2307/3798365

    Article  Google Scholar 

  • McGee EM, Turnbull WD (2010) A paleopopulation of Coryphodon lobatus (Mammalia: Pantodonta) from Deardorff hill Coryphodon quarry, Piceance Creek Basin, Colorado. Fieldiana Geol 52:1–12. doi: 10.3158/0096-2651-52.1.1

    Article  Google Scholar 

  • Mertens H (1984) Détermination de l’âge chez le topi (Damaliscus korrigum Ogilby) au Parc National des Virunga (Zaïre). Mammalia 48:425–435. doi: 10.1515/mamm.1984.48.3.425

    Article  Google Scholar 

  • Midford PE, Garland T Jr, Maddison WP (2011) PDAP Package of Mesquite. Version 1.16

  • Miller FL (1972) Eruption and attrition of mandibular teeth in barren-ground caribou. J Wildl Manage 36:606–612. doi: 10.2307/3799093

    Article  Google Scholar 

  • Miura S, Yasui K (1985) Validity of tooth eruption-wear patterns as age criteria in the Japanese serow, Capricornis crispus. J Mammal Soc Jpn 10:169–178. doi: 10.11238/jmammsocjapan1952.10.169

    Google Scholar 

  • Mosby HS (1960) Manual of Game Investigational Techniques. The Wildlife Society, Ann Arbor

    Google Scholar 

  • Ohtaishi N (1980) Estimation of sex, age, and season of death using mandibles of Cervus nippon excavated from an archaeological site. Arch Nat Sci 13:51–74 (in Japanese).

    Google Scholar 

  • Osborn JW (1970) New approach to Zahnreihen. Nature 225:343–346. doi: 10.1038/225343a0

    Article  CAS  PubMed  Google Scholar 

  • Osborn JW, Crompton AW (1973) The evolution of mammalian from reptilian dentitions. Breviora 399:1–18

    Google Scholar 

  • Pérez-Barbería FJ, Gordon IJ (2005) Gregariousness increases brain size in ungulates. Oecologia 145:41–52. doi: 10.1007/s00442-005-0067-7

    Article  PubMed  Google Scholar 

  • Pérez-Barbería FJ, Mutuberría G (1996) Teeth eruption pattern in Cantabrian chamois Rupicapra pyrenaica parva. Acta Theriol 41:217–221

    Article  Google Scholar 

  • Peterson RL (1955) North American Moose. University of Toronto Press, Toronto

    Google Scholar 

  • Rautenbach IL (1971) Ageing criteria in the springbok, Antidorcas marsupialis (Zimmermann, 1780) (Artiodactyla: Bovidae). Ann Transv Mus 27:83–133

    Google Scholar 

  • Read AF, Harvey PH (1989) Life history differences among the eutherian radiations. J Zool 219:329–353. doi: 10.1111/j.1469-7998.1989.tb02584.x

    Article  Google Scholar 

  • Robinette WL, Archer AL (1971) Notes on ageing criteria and reproduction of Thomson’s gazelle. E Afr Wildl J 9:83–98. doi: 10.1111/j.1365-2028.1971.tb00222.x

    Article  Google Scholar 

  • Robinette WL, Jones DA, Rogers G, Gashwiler JS (1957) Notes on tooth development and wear for Rocky Mountain mule deer. J Wildl Manage 21:134–153. doi: 10.2307/3797579

    Article  Google Scholar 

  • Roettcher D, Hofmann RR (1970) The ageing of impala from a population in the Kenya Rift Valley. E Afr Wildl J 8:37–42. doi: 10.1111/j.1365-2028.1970.tb00828.x

    Article  Google Scholar 

  • Schultz AH (1956) Postembryonic age changes. In: Hofer H, Schultz AH, Starck D (eds) Primatologia, 1st vol. Karger, Basel, pp 887–964

    Google Scholar 

  • Schultz AH (1960) Age changes in primates and their modification in man. In: Tanner JM (ed) Human Growth, 3rd vol. Pergamon Press, Oxford, pp 1–20

    Google Scholar 

  • Schwartz GT, Mahoney P, Godfrey LR, Cuozzo FP, Jungers WL, Randria GFN (2005) Dental development in Megaladapis edwardsi (Primates, Lemuriformes): implications for understanding life history variation in subfossil lemurs. J Hum Evol 49:702–721. doi: 10.1016/j.jhevol.2005.08.006

    Article  PubMed  Google Scholar 

  • Severinghaus CW (1949) Tooth development and wear as criteria of age in white-tailed deer. J Wildl Manage 13:195–216. doi: 10.2307/3796089

    Article  Google Scholar 

  • Sheil CA, Jorgensen M, Tulenko F, Harrington S (2014) Variation in timing of ossification affects inferred heterochrony of cranial bones in Lissamphibia. Evol Dev 16:292–305. doi: 10.1111/ede.12092

    Article  PubMed  Google Scholar 

  • Shigehara N (1980) Epiphyseal union, tooth eruption, and sexual maturation in the common tree shrew, with reference to its systematic problem. Primates 21:1–19. doi: 10.1007/BF02383820

    Article  Google Scholar 

  • Simpson SW, Lovejoy CO, Meindl RS (1990) Hominoid dental maturation. J Hum Evol 19:285–297. doi: 10.1016/0047-2484(90)90070-R

    Article  Google Scholar 

  • Slaughter BH, Ronald PH, Nobuko EP (1974) Eruption of cheek teeth in Insectivora and Carnivora. J Mammal 55:115–125. doi: 10.2307/1379261

    Article  CAS  PubMed  Google Scholar 

  • Smith BH (1989) Dental development as a measure of life history in primates. Evolution 43:683–688. doi: 10.2307/2409073

    Article  Google Scholar 

  • Smith BH (1992) Life history and the evolution of human maturation. Evol Anthropol 1:134–142. doi: 10.1002/evan.1360010406

    Article  Google Scholar 

  • Smith BH (1994) Sequence of emergence of the permanent teeth in Macaca, Pan, Homo, and Australopithecus: its evolutionary significance. Am J Hum Biol 6:61–76. doi: 10.1002/ajhb.1310060110

    Article  Google Scholar 

  • Smith BH (2000) ‘Schulz’s rule’ and the evolution of tooth emergence and replacement patterns in primates and ungulates. In: Teaford MF, Smith MM, Ferguson MWJ (eds) Development, Function and Evolution of Teeth. Cambridge University Press, Cambridge, pp 212–228

    Chapter  Google Scholar 

  • Smith BH, Crummet TL, Bradt KL (1994) Ages of eruption of primate teeth: a compendium for aging individuals and comparing life histories. Yearb Phys Anthropol 37:177–231. doi: 10.1002/ajpa.1330370608

    Article  Google Scholar 

  • Smuts GL (1974) Age determination in Burchell’s zebra (Equus burchelli antiquorum) from the Kruger National Park. S Afr J Wildl Res 4:103–115

    Google Scholar 

  • Smuts GL, Anderson JL, Austin JC (1978) Age determination of the African lion (Panthera leo). J Zool 185:115–146. doi: 10.1111/j.1469-7998.1978.tb03317.x

    Article  Google Scholar 

  • Tacutu R, Craig T, Budovsky A, Wuttke D, Lehmann G, Taranukha D, Costa J, Fraifeld VE, de Magalhaes JP (2013) Human ageing genomic resources: integrated databases and tools for the biology and genetics of ageing. Nucleic Acids Res 41(D1):D1027-D1033. doi: 10.1093/nar/gks1155

    Article  CAS  PubMed  Google Scholar 

  • Tattersall I, Schwartz JH (1974) Craniodental morphology and the systematics of the Malagasy lemurs (Primates, Prosimii). Anthropol Pap Am Mus 52:139–192

    Google Scholar 

  • Taylor RD (1988) Age determination of the African buffalo, Syncerus caffer (Sparrman) in Zimbabwe. Afr J Ecol 26:207–220. doi: 10.1111/j.1365-2028.1988.tb00972.x

    Article  Google Scholar 

  • Thenius E (1989) Zähne und Gebiß der Säugetiere. In: Niethammer J, Schliemann H, Starck D (eds) Handbuch der Zoologie, VIII Mammalia. Walter de Gruyer, Berlin

    Google Scholar 

  • Theodor JM (2010) Micro–computed tomographic scanning of the ear region of Cainotherium: character analysis and implications. J Vertebr Paleontol 30:236–243. doi: 10.1080/02724630903415979

    Article  Google Scholar 

  • van der Geer AAE, Lyras GA, MacPhee RDE, Lomolino M, Drinia H (2014) Mortality in a predator-free insular environment: the dwarf deer of Crete. Am Mus Novitates 3807:1–26. doi: 10.1206/3807.1

    Article  Google Scholar 

  • van Horn RC, McElhinny TL, Holekamp KE (2003) Age estimation and dispersal in the spotted Hyena (Crocuta crocuta). J Mammal 84:1019–1030

    Article  Google Scholar 

  • van Nievelt AFH, Smith KK (2005a) To replace or not to replace: the significance of reduced functional tooth replacement in marsupial and placental mammals. Paleobiology 31:324-346. doi: 10.1666/0094-8373(2005)031[0324:TRONTR]2.0.CO;2

    Article  Google Scholar 

  • van Nievelt AFH, Smith KK (2005b) Tooth eruption in Monodelphis domestica and its significance for phylogeny and natural history. J Mammal 86:333-341. doi: 10.1644/BWG-224.1

  • Vigal CR, Machordom A (1985) Tooth eruption and replacement in the Spanish wild goat. Acta Theriol 19:305-320

    Article  Google Scholar 

  • Wegrzyn M, Serwatka S (1984) Teeth eruption in the European bison. Acta Theriol 29:111-121.

    Article  Google Scholar 

  • Western D (1979) Size, life history and ecology in mammals. Afr J Ecol 17:185-204. doi: 10.1111/j.1365-2028.1979.tb00256.x

    Article  Google Scholar 

  • Wilson VJ, Schmidt JL, Hanks J (1984) Age determination and body growth of the common duiker Sylvicapra grimmia (Mammalia). J Zool 202:283-297. doi: 10.1111/j.1469-7998.1984.tb05955.x

    Article  Google Scholar 

Download references

Acknowledgments

We thank the following colleagues for access to collections: Loïc Costeur (NMB), Christiane Funk (MfN), Alexandra van der Geer (NBC), Marianne Haffner (ZMUZH_MAMM), Stefan T. Hertwig (NMBE), Michael Hiermeier (ZSM), Lars van den Hoek Ostende (NBC), Ralf-Dietrich Kahlke (IQW), Barbara Oberholzer (ZMUZH_MAMM), Itatí A. Olivares (MLPA), Gertrud Rössner (BSPG), Manuel Ruedi (MHNG), Manuel Schweizer (NMBE), and Diego H. Verzi (MLPA). Our gratitude goes also to Madeleine Geiger (PIMUZ), Robert Asher (UMZC), Daisuke Koyabu (UMUTZ), and the anonymous reviewer for their helpful advice with methodological questions as well as for discussion and to Ashley Latimer (PIMUZ) for reviewing the English. This research was funded by the Swiss National Science Foundation (SNF) grant 31003A_149605 to Marcelo R. Sánchez-Villagra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristof Veitschegger.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

(PDF 374 kb)

Supplementary Table 2

(PDF 372 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veitschegger, K., Sánchez-Villagra, M.R. Tooth Eruption Sequences in Cervids and the Effect of Morphology, Life History, and Phylogeny. J Mammal Evol 23, 251–263 (2016). https://doi.org/10.1007/s10914-015-9315-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-015-9315-8

Keywords

Navigation