Skip to main content
Log in

Eckart frame Hamiltonians in the three-body problem

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

The Eckart frame is used to separate out the collective rotations in the quantum three-body problem. Explicit expressions for the corresponding rotational and vibro-rotational (i.e. Coriolis) Hamiltonians are derived. Special attention is paid to the situation when two principal moments of inertia are equal in the equilibrium configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Since the choice of BF is not unique, its definition can be considered as the gauge convention [1].

References

  1. R.G. Littlejohn, M. Reinsch, Rev. Mod. Phys. 69(1), 213 (1997)

    Article  Google Scholar 

  2. C. Eckart, Phys. Rev. 47, 552 (1935)

    Article  CAS  Google Scholar 

  3. L.C. Biedenharn, J.D. Louck, Angular Momentum in Quantum Physics. Theory and Applications (Addison-Wesley, Reading, 1981)

    Google Scholar 

  4. J.K.J. Watson, Mol. Phys. 15(5), 479 (1968)

    Article  CAS  Google Scholar 

  5. A.Y. Dymarsky, K.N. Kudin (2005). The Journal of Chemical Physics 122(12):124103. doi:10.1063/1.1864872. http://link.aip.org/link/?JCP/122/124103/1

  6. K.L. Mardis, E.L. Sibert III, J. Chem. Phys. 106, 6618 (1997)

    Article  CAS  Google Scholar 

  7. G. Natanson, Mol. Phys. 66, 129 (1989)

    Article  Google Scholar 

  8. G.A. Natanson, Chem. Phys. Lett. 121, 343 (1985)

    Article  CAS  Google Scholar 

  9. S.M. Adler-Golden, G.D. Carney, Chem. Phys. Lett. 113(6), 582 (1985)

    Article  CAS  Google Scholar 

  10. R.W. Redding, F.O. Meyer, J. Mol. Spectrosc. 74(3), 486 (1979)

    Article  CAS  Google Scholar 

  11. F. Jorgensen, Int. J. Quantum Chem. 14, 55 (1978)

    Article  Google Scholar 

  12. F.O. Meyer, R.W. Redding, J. Mol. Spectrosc. 70(3), 410 (1978)

    Article  CAS  Google Scholar 

  13. O.L. Weaver, R.Y. Cusson, L.C. Biedenharn, Ann. Phys. 102, 493 (1976)

    Article  Google Scholar 

  14. J.D. Louck, H.W. Galbraith, Rev. Mod. Phys. 48(1), 69 (1976)

    Article  Google Scholar 

  15. A.A. Kiselev, Optika i Spektroskopiya 24(2), 181 (1968). Eng. trans. Optics and Spectroscopy. 24, 2–90 (1968)

    Google Scholar 

  16. S.M. Ferigle, A. Weber (1953). American Journal of Physics 21(2):102. doi:10.1119/1.1933365. http://link.aip.org/link/?AJP/21/102/1

    Google Scholar 

  17. H. Wei, J. Chem. Phys. 118, 7202 (2003)

    Article  CAS  Google Scholar 

  18. H. Wei, J. Chem. Phys. 118, 7208 (2003)

    Article  CAS  Google Scholar 

  19. H. Wei, T. Carrington Jr, Chem. Phys. Lett. 287, 289 (1998)

    Article  CAS  Google Scholar 

  20. H. Wei, T. Carrington Jr, J. Chem. Phys. 107, 9493 (1997)

    Article  CAS  Google Scholar 

  21. H. Wei, T. Carrington Jr, J. Chem. Phys. 107, 2813 (1997)

    Article  CAS  Google Scholar 

  22. A.V. Meremianin, J.S. Briggs, Phys. Rep. 384(4–6), 121 (2003)

    Article  CAS  Google Scholar 

  23. A.V. Meremianin, J. Chem. Phys. 120, 7861 (2004)

    Article  CAS  Google Scholar 

  24. Y.F. Smirnov, K.V. Shitikova, Sov. J. Part. Nucl. 8(4), 344 (1977)

    Google Scholar 

  25. A.V. Meremianin, Methods of Quantum Angular Momentum Theory in the Quantum Few-Body Problem (LAMBERT Academic Publishing, Rus, Metody kvantovoj teorii uglovogo momenta v kvantovoy zadache neskolkih tel, 2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Meremianin.

Appendices

Appendix A: Relations between Eckart and Jacobi-bond coordinates

Below the connections between the set of Eckart and Jacobi internal coordinates are presented. Such connections follow from the definition of Eckart vectors (9) and the properties of the principal inertia axes. Omitting details of somewhat cumbersome computations we present here only the final results,

$$\begin{aligned} f_1^{2} = \frac{I_2}{I_1 - I_2} \left( r_1^{2} (I_1 - \rho _1^{2}) + r_2^{2} (I_1 - \rho _2^{2}) - 2 (\mathbf{r}_1 \cdot \mathbf{r}_2 )\, ( \varvec{\rho }_1 \cdot \varvec{\rho }_2 ) \right). \end{aligned}$$
(34)

For the vector \(\mathbf{f}_2\) one has

$$\begin{aligned} f_2^{2} = \frac{-I_1}{I_1 - I_2} \left( r_1^{2} (I_2 - \rho _1^{2}) + r_2^{2} (I_2 - \rho _2^{2}) - 2 (\mathbf{r}_1 \cdot \mathbf{r}_2 )\, ( \varvec{\rho }_1 \cdot \varvec{\rho }_2 ) \right), \end{aligned}$$
(35)

The scalar product of Eckart vectors expresses as

$$\begin{aligned} (\mathbf{f}_1 \cdot \mathbf{f}_2) = \frac{| \varvec{\rho }_1 \times \varvec{\rho }_2 |}{I_1 - I_2} \left( (\varvec{\rho }_1 \cdot \varvec{\rho }_2)\, (r_1^{2}-r_2^{2}) - (\mathbf{r}_1 \cdot \mathbf{r}_2)\, (\rho _1^{2} - \rho _2^{2}) \right). \end{aligned}$$
(36)

As is seen, the scalar product \((\mathbf{f}_1 \cdot \mathbf{f}_2)\) vanishes in the rigid-body limit when the vibration amplitudes tend to zero. The analysis of the rigid body limit of parameters \(f_1\) and \(f_2\) is slightly more complicated. Namely, in the rigid-body limit we have \(\mathbf{r}_1 \rightarrow \varvec{\rho }_1\) and \(\mathbf{r}_2 \rightarrow \varvec{\rho }_2\) which, noting the definitions (9), leads to

$$\begin{aligned} \left(f_1^{2} \right)_{eq} = x_1^{2} \rho _1^{2} + x_2^{2} \rho _2^{2} + 2 x_1 x_2 (\varvec{\rho }_1 \cdot \varvec{\rho }_2). \end{aligned}$$
(37)

Now we re-write \(\rho \)’s in terms of their coordinates according to (8). This yields

$$\begin{aligned} \left(f_1^{2} \right)_{eq} = \left( x_1^{2} + x_2^{2} \right)^{2} + (x_1 y_1 + x_2 y_2)^{2} = I_2^{2}. \end{aligned}$$
(38)

Here, in the course of derivations we have utilized Eqs. (17) and (16).

Thus, in the limit of zero vibrations one has

$$\begin{aligned} (f_1)_{eq}&= I_2, \quad (f_2)_{eq} = I_1, \nonumber \\ \phi _{eq}&= \frac{\pi }{2}. \end{aligned}$$
(39)

Clearly, the above Eqs. (34)–(36) are invalid when the equilibrium principal moments of inertia are equal. According to Eq. (44) of the next Appendix the condition \(I_1 = I_2\) is met only if

$$\begin{aligned} \rho _1 = \rho _2, \quad \theta _e = \pi /2, \end{aligned}$$
(40)

where \(\theta _e\) is the mutual angle in the equilibrium configuration, see Fig. 1. Thus, the vectors \(\varvec{\rho }_1\) and \(\varvec{\rho }_2\) are perpendicular and, hence, we can choose them to define the Cartesian basis, i.e.

$$\begin{aligned} \mathbf{e}_1 = \frac{\varvec{\rho }_1}{\rho _1}, \quad \mathbf{e}_2 = \frac{\varvec{\rho }_2}{\rho _2}. \end{aligned}$$
(41)

As a consequence we have that the coordinates in Eq. (8) become

$$\begin{aligned} x_1 = \rho _1, \quad y_2 = \rho _2, \quad x_2 = y_1 =0. \end{aligned}$$

From these identities and from (9) we obtain that at \(I_1 = I_2\) the Eckart vectors can be chosen as

$$\begin{aligned} \mathbf{f}_1 = \rho \mathbf{r}_1, \quad \mathbf{f}_2 = \rho \mathbf{r}_2, \end{aligned}$$
(42)

where \(\rho = \rho _1 = \rho _2\). The corresponding Eckart parameter (12) expresses as

$$\begin{aligned} \mathcal{F }^{2} = \rho ^{2} \, \bigl ( r_1^{2} + r_2^{2} + 2 r_1 r_2 \sin \theta \bigr ). \end{aligned}$$
(43)

Appendix B: The equilibrium inertia moments

The straightforward calculation of the eigenvalues of the inertia tensor leads to the following relations for the principal inertia moments of the equilibrium configuration

$$\begin{aligned} I_1&= \frac{\rho _1^{2}+\rho _2^{2}}{2} + \frac{1}{2}\sqrt{ (\rho _1^{2} - \rho _2^{2})^{2} + (2 \rho _1 \rho _2 \cos \theta _e)^{2}}, \nonumber \\ I_2&= \frac{\rho _1^{2}+\rho _2^{2}}{2} - \frac{1}{2}\sqrt{ (\rho _1^{2}-\rho _2^{2})^{2} + (2 \rho _1 \rho _2 \cos \theta _e )^{2}}. \end{aligned}$$
(44)

We remind that \(\rho _{1,2}\) are mass-scaled Jacobi vectors. To obtain expressions in terms of conventional Jacobi vectors one should apply the replacements \(\rho _{1,2} \rightarrow \rho _{1,2} \, \sqrt{\mu }_{1,2}\) to the above Eq. (44).

As is seen from (44) the principal inertia moments are equal if Jacobi vectors are perpendicular (i.e. when \(\theta _e = \pi /2\)) and their lengths satisfy the equation

$$\begin{aligned} \mu _1 \rho _1^{2} = \mu _2 \rho _2^{2}. \end{aligned}$$
(45)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meremianin, A.V. Eckart frame Hamiltonians in the three-body problem. J Math Chem 51, 1376–1387 (2013). https://doi.org/10.1007/s10910-013-0152-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-013-0152-9

Keywords

Navigation