Skip to main content
Log in

Mathematical modelling for equilibrium configurations of concentric gold nanoparticles

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Nanotechnology is a promising research area, and it is believed that the unique properties of molecules at the nano-scale will benefit mankind especially in the medical exploration. Here we utilize an applied mathematical modelling to investigate spherical and cylindrical concentric structures of gold nanoparticles, with the aim of maximising the free space for which to improve amount of drug or gene to bind on the nanoparticle surfaces and deliver to the target cells. The energy between two gold molecules is modelled by the 6–12 Lennard-Jones potential function, and the total potential between two layers for such particles is calculated using the continuous approximation. On minimising the energy function, the radii for five layers for the concentric sphere and likewise for the cylinder are presented. Further, the equilibrium spacing between any two layers is predicted to lie in the range 2.94–2.96 Å, for both concentric structures. There are at present no experimental or simulation results for comparison with the theoretical equilibrium configurations for concentric gold nanoparticles predicted by this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mornet S., Vasseur S., Grasset F., Duguet E.: Magnetic nanoparticle design for medical diagnosis and therapy. J. Mater. Chem. 14, 2161–2175 (2004)

    Article  CAS  Google Scholar 

  2. Stella B., Arpicco S., Peracchia M.T., Desmaele D., Hoebeke J., Renoir M., D’Angelo J., Cattel L., Couvreur P.: Design of folic acid-conjugated nanoparticles for drug targeting. J. Pharm. Sci. 89(11), 1452–1464 (2000)

    Article  CAS  Google Scholar 

  3. Pissuwan D., Valenzuela S.M., Cortie M.B.: Therapeutic possibilities of plasmonically heated gold nanoparticles. Trends Biotechnol. 24(2), 62–67 (2006)

    Article  CAS  Google Scholar 

  4. Pissuwan D., Valenzuela S.M., Killingsworth M.C., Xu X., Cortie M.B.: Targeted destruction of murine macrophage cells with bioconjugated gold nanorods. J. Namopart. Res 9, 1109–1124 (2007)

    Article  CAS  Google Scholar 

  5. Pissuwan D., Valenzuela S.M., Cortie M.B.: Prospects for gold nanorod particles in diagnostic and therapeutic applications. Biotechno. Gen. Eng. Rev. 25, 93–112 (2008)

    CAS  Google Scholar 

  6. D. Pissuwan, T. Niidome, M.B. Cortie, The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J. Control. Release. (2009). doi:10.1016/j.jconrel.2009.12.006

  7. P. Ghosh, G. Han, M. De, C.K. Kim, V.M. Rotello, Cold nanoparticles in delivery applications. Adv. Drug Deliv. Rev. 60(11) (2008)

  8. P.C. Chen, S.C. Mwakwari, A.K. Oyelere, Gold nanoparticles: from nanomedicine to nanosensing. Nanotech. Sci. Appl. 1(45–66) (2008)

    Google Scholar 

  9. Bhattacharya R., Patra C.R., Earl A., Wang S., Katarya K., Lu L., Kizhakkedathu J.N., Yaszemski M.J., Greipp P.R., Mukhopadhyay D., Mukherjee P.: Attaching folic acid on gold nanoparticles using noncovalent interaction via different polyethylene glycol backbones and targeting of cancer cells. Nanomedicine 3(3), 224–238 (2007)

    CAS  Google Scholar 

  10. Chithrani B.D., Ghazani A.A., Chan W.C.W.: Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 6(4), 662–668 (2006)

    Article  CAS  Google Scholar 

  11. Pu Q., Leng Y., Zhao X., Cummings P.T.: Molecular simulations of stretching gold nanowires in solvents. Nanotechnology 18, 424007 (2007)

    Article  Google Scholar 

  12. Lewis L.J., Jensen P., Combe N., Barrat J.-L.: Diffusion of gold nanoclusters on graphite. Phys. Rev. B 61(23), 16084–16090 (2000)

    Article  CAS  Google Scholar 

  13. Arcidiacono S., Walther J.H., Poulikakos D., Passerone D., Koumoutsakos P.: Solidification of gold nanoparticles in carbon nanotubes. Phys. Rev. Lett. 94, 105502 (2005)

    Article  CAS  Google Scholar 

  14. Bilalbegovic G.: Structures and melting in infinite gold nanowires. Solid State Commun. 115, 73–76 (2000)

    Article  CAS  Google Scholar 

  15. Andrews G.E., Askey R., Roy R.: Special Functions. Cambridge University Press, Cambridge (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duangkamon Baowan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baowan, D., Chayantrakom, K., Satiracoo, P. et al. Mathematical modelling for equilibrium configurations of concentric gold nanoparticles. J Math Chem 49, 1042–1053 (2011). https://doi.org/10.1007/s10910-010-9796-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-010-9796-x

Keywords

Navigation