Skip to main content
Log in

SPT-SLIM: A Line Intensity Mapping Pathfinder for the South Pole Telescope

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The South Pole Telescope Summertime Line Intensity Mapper (SPT-SLIM) is a pathfinder experiment that will demonstrate the use of on-chip filter-bank spectrometers for mm-wave line intensity mapping. The SPT-SLIM focal plane consists of 18 dual-polarization filter-bank spectrometers covering 120–180 GHz with resolving power of 300, coupled to aluminum kinetic inductance detectors. A compact cryostat holds the detectors at 100 mK. SPT-SLIM will be deployed to the 10-m South Pole Telescope for observations during the 2023–2024 austral summer without removing the primary receiver. We discuss the overall instrument design, expected detector performance, and sensitivity to the carbon monoxide line signal at \(0.5< z < 2\). The technology and observational techniques demonstrated by SPT-SLIM will enable next-generation line intensity mapping experiments that constrain cosmology beyond the redshift reach of galaxy surveys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. E. Kovetz et al. arXiv eprints:1709.09066 (2017)

  2. K.S. Karkare et al., Phys. Rev. D. (2018). https://doi.org/10.1103/PhysRevD.98.043529

    Article  Google Scholar 

  3. A. Moradinezhad Dizgah et al., arXiv eprints:2110.00014 (2021)

  4. Y. Gong et al., Astrophys. J. 745, 49 (2012). https://doi.org/10.1088/0004-637X/745/1/49

    Article  Google Scholar 

  5. G. Keating et al., Astrophys. J. 901, 141 (2020). https://doi.org/10.3847/1538-4357/abb08e

    Article  Google Scholar 

  6. E. Shirokoff et al., Proc. SPIE 8452, 84520R (2012). https://doi.org/10.1117/12.927070

    Article  Google Scholar 

  7. A. Endo et al., J. Astron. Telesc. Instrum. Syst. (2019). https://doi.org/10.1117/1.JATIS.5.3.035004

    Article  Google Scholar 

  8. G. Cataldo et al., Acta Astronaut. 162, 155 (2019). https://doi.org/10.1016/j.actaastro.2019.06.012

    Article  Google Scholar 

  9. A.T. Crites et al., Proc. SPIE 9153, 91531W (2014). https://doi.org/10.1117/12.2057207

    Article  Google Scholar 

  10. N.F. Cothard et al., J. Low Temp. Phys. 199, 878 (2020). https://doi.org/10.1007/s10909-019-02297-1

    Article  Google Scholar 

  11. G. Robson et al., J. Low Temp. Phys. This Special Issue (2021)

  12. P. Barry et al., J. Low Temp. Phys. This Special Issue (2021)

  13. S. Paine, The am atmospheric model. https://doi.org/10.5281/zenodo.1193646 (2018)

  14. G. Sun et al., Astrophys. J. 856, 107 (2018). https://doi.org/10.3847/1538-4357/aab3e3

    Article  Google Scholar 

  15. A. Lidz et al., Astrophys. J. 825, 143 (2016). https://doi.org/10.3847/0004-637X/825/2/143

    Article  Google Scholar 

  16. Y.T. Cheng et al., Astrophys. J. 901, 142 (2020). https://doi.org/10.3847/1538-4357/abb023

    Article  Google Scholar 

  17. J.E. Carlstrom et al., Publ. Astron. Soc. Pac. 123, 568 (2011). https://doi.org/10.1086/659879

    Article  Google Scholar 

  18. J.A. Sobrin et al., arXiv eprints:2106.11202 (2021)

  19. J. Kim et al., Proc. SPIE 10708, 107082S (2018). https://doi.org/10.1117/12.2301005

    Article  Google Scholar 

  20. J. Redford et al., Proc. SPIE 10708, 107081O (2018). https://doi.org/10.1117/12.2313666

    Article  Google Scholar 

  21. K.S. Karkare et al., J. Low Temp. Phys. 199, 849 (2020). https://doi.org/10.1007/s10909-020-02407-4

    Article  Google Scholar 

  22. Q.Y. Tang et al., J. Low Temp. Phys. 199, 362 (2020). https://doi.org/10.1007/s10909-020-02341-5

    Article  Google Scholar 

  23. J. Baselmans et al., Astron. Astrophys. 601, A89 (2017). https://doi.org/10.1051/0004-6361/201629653

    Article  Google Scholar 

  24. R. McGeehan et al., J. Low Temp. Phys. 193, 1024 (2018). https://doi.org/10.1007/s10909-018-2061-6

    Article  Google Scholar 

  25. K. Bandura et al., J. Astron. Instrum. 5(4), 1641005 (2016). https://doi.org/10.1142/S2251171716410051

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Fermilab under award LDRD-2021-048 and by the National Science Foundation under award AST-2108763. K. S. Karkare is supported by an NSF Astronomy and Astrophysics Postdoctoral Fellowship under award AST-2001802.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Karkare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karkare, K.S., Anderson, A.J., Barry, P.S. et al. SPT-SLIM: A Line Intensity Mapping Pathfinder for the South Pole Telescope. J Low Temp Phys 209, 758–765 (2022). https://doi.org/10.1007/s10909-022-02702-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02702-2

Keywords

Navigation