Skip to main content
Log in

Computer Simulation Study of Nanoscale Size Parahydrogen Clusters

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We present results of computer simulations of a parahydrogen cluster of a thousand molecules, corresponding to approximately 4 nm in diameter, at temperatures between 1 and 10  K. Examination of structural properties suggests that the local environment experienced by molecules is very similar to that in solid bulk parahydrogen, especially near the center of the cluster, where crystallization originates. Albeit strongly suppressed compared to helium, quantum-mechanical exchanges are not entirely negligible at the lowest temperature, resulting in a small but significant molecular mobility enhancement with respect to the bulk crystalline phase. Although the overall superfluid response at the lowest temperature is only few percents, there is evidence of a surprising “supersolid” core, as well as of a superfluid outer shell. Much like in fluid parahydrogen at the melting temperature, quantum-mechanical signatures can be detected in the momentum distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. There are neither theoretical predictions nor experimental evidence suggesting that a p-H2 crystal might display superfluid behavior. See, for instance, See Ref. [2].

  2. The superfluid fraction of a finite cluster is defined as \(\rho _\mathrm{S}=1-(I/I_\mathrm{cl})\), where I is the moment of inertia of the cluster with respect of the rotation axis, and \(I_\mathrm{cl}\) is its corresponding classical value. For details of its evaluation in path integral Monte Carlo simulations, see Ref. [15].

  3. Specific clusters, e.g., (p-H2)\(_{26}\) have been predicted to display simultaneously superfluidity and a geometrically regular ordering of molecules (Ref. [24]).

  4. For recent refinements of the SG potential, see Ref. [35].

  5. See, for instance, Ref. [38].

  6. It is difficult to furnish precise estimates of the local superfluid density in the \(r\rightarrow 0\) limit, due to the limited statistics that can be accumulated in such a limited volume, in the course of a reasonable simulation.

References

  1. V.L. Ginzburg, A.A. Sobyanin, JETP Lett. 15, 242 (1972)

    ADS  Google Scholar 

  2. A.C. Clark, X. Lin, M.H.W. Chan, Phys. Rev. Lett. 97, 245301 (2006)

    Article  ADS  Google Scholar 

  3. M. Bretz, A.L. Thomson, Phys. Rev. B 24, 467 (1981)

    Article  ADS  Google Scholar 

  4. M. Schindler, A. Dertinger, Y. Kondo, F. Pobell, Phys. Rev. B 53, 11451 (1996)

    Article  ADS  Google Scholar 

  5. P.E. Sokol, R.T. Azuah, M.R. Gibbs, S.M. Bennington, J. Low Temp. Phys. 103, 23 (1996)

    Article  ADS  Google Scholar 

  6. M. Boninsegni, Phys. Rev. B 70, 193411 (2004)

    Article  ADS  Google Scholar 

  7. M. Boninsegni, Phys. Rev. Lett. 111, 235303 (2013)

    Article  ADS  Google Scholar 

  8. M. Boninsegni, New J. Phys. 7, 78 (2005)

    Article  ADS  Google Scholar 

  9. J. Turnbull, M. Boninsegni, Phys. Rev. B 78, 144509 (2008)

    Article  ADS  Google Scholar 

  10. M. Boninsegni, Phys. Rev. B 93, 054507 (2016)

    Article  ADS  Google Scholar 

  11. M. Boninsegni, A.B. Kuklov, L. Pollet, N.V. Prokof’ev, B.V. Svistunov, M. Troyer, Phys. Rev. Lett. 99, 035301 (2007)

    Article  ADS  Google Scholar 

  12. T. Omiyinka, M. Boninsegni, Phys. Rev. B 93, 104501 (2016)

    Article  ADS  Google Scholar 

  13. A. Del Maestro, M. Boninsegni, Phys. Rev. B 95, 054517 (2017)

    Article  ADS  Google Scholar 

  14. M. Boninsegni, Phys. Rev. B 97, 054517 (2018)

    Article  ADS  Google Scholar 

  15. P. Sindzingre, M.L. Klein, D.M. Ceperley, Phys. Rev. Lett. 63, 1601 (1989)

    Article  ADS  Google Scholar 

  16. P. Sindzingre, D.M. Ceperley, M.L. Klein, Phys. Rev. Lett. 67, 1871 (1991)

    Article  ADS  Google Scholar 

  17. F. Mezzacapo, M. Boninsegni, Phys. Rev. Lett. 97, 045301 (2006)

    Article  ADS  Google Scholar 

  18. F. Mezzacapo, M. Boninsegni, Phys. Rev. A 75, 033201 (2007)

    Article  ADS  Google Scholar 

  19. F. Mezzacapo, M. Boninsegni, J. Phys. Condens. Matter 21, 164205 (2009)

    Article  ADS  Google Scholar 

  20. Y. Kwon, K.B. Whaley, Phys. Rev. Lett 89, 273401 (2002)

    Article  ADS  Google Scholar 

  21. H. Li, R.J. Le Roy, P.-N. Roy, A.R.W. McKellar, Phys. Rev. Lett. 105, 133401 (2010)

    Article  ADS  Google Scholar 

  22. T. Omiyinka, M. Boninsegni, Phys. Rev. B 90, 064511 (2014)

    Article  ADS  Google Scholar 

  23. S. Grebenev, B. Sartakov, J.P. Toennies, A.F. Vilesov, Science 289, 1532 (2000)

    Article  ADS  Google Scholar 

  24. F. Mezzacapo, M. Boninsegni, J. Phys. Chem. A 115, 6831 (2011)

    Article  Google Scholar 

  25. R.S. Berry, T.L. Beck, H.L. Davis, Adv. Chem. Phys. 70, 75 (1988)

    Google Scholar 

  26. C. Chakravarty, J. Chem. Phys. 103, 10663 (1995)

    Article  ADS  Google Scholar 

  27. S.A. Khairallah, M.B. Sevryuk, D.M. Ceperley, J.P. Toennies, Phys. Rev. Lett. 98, 183401 (2007)

    Article  ADS  Google Scholar 

  28. J.E. Cuervo, P.-N. Roy, J. Chem. Phys. 128, 224509 (2008)

    Article  ADS  Google Scholar 

  29. R. Guardiola, J. Navarro, Cent. Eur. J. Phys. 6, 33 (2008)

    Google Scholar 

  30. K. Kuyanov-Prozument, A.F. Vilesov, Phys. Rev. Lett. 101, 205301 (2008)

    Article  ADS  Google Scholar 

  31. F. Mezzacapo, M. Boninsegni, Phys. Rev. Lett. 100, 145301 (2008)

    Article  ADS  Google Scholar 

  32. M. Wagner, D.M. Ceperley, J. Low Temp. Phys. 94, 161 (1994)

    Article  ADS  Google Scholar 

  33. E.S. Hernandez, M.W. Cole, M. Boninsegni, Phys. Rev. B 68, 125418 (2003)

    Article  ADS  Google Scholar 

  34. I.F. Silvera, V.V. Goldman, J. Chem. Phys. 69, 4209 (1978)

    Article  ADS  Google Scholar 

  35. T. Omiyinka, M. Boninsegni, Phys. Rev. B 88, 024112 (2013)

    Article  ADS  Google Scholar 

  36. M. Boninsegni, N. Prokof’ev, B. Svistunov, Phys. Rev. Lett. 96, 070601 (2006)

    Article  ADS  Google Scholar 

  37. M. Boninsegni, N. Prokof’ev, B. Svistunov, Phys. Rev. E 74, 036701 (2006)

    Article  ADS  Google Scholar 

  38. R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path Integrals, Ch. 10 (McGraw-Hills, New York, 1965)

    MATH  Google Scholar 

  39. M. Boninsegni, J. Low Temp. Phys. 141, 27 (2005)

    Article  ADS  Google Scholar 

  40. Y. Kwon, F. Paesani, K.B. Whaley, Phys. Rev. B 74, 174522 (2006)

    Article  ADS  Google Scholar 

  41. M. Dusseault, M. Boninsegni, Phys. Rev. B 95, 104518 (2017)

    Article  ADS  Google Scholar 

  42. M. Boninsegni, M.W. Cole, F. Toigo, Phys. Rev. Lett. 83, 2002 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC). The author gratefully acknowledges the hospitality of the International Centre for Theoretical Physics, Trieste, where most of this research work was carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Boninsegni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boninsegni, M. Computer Simulation Study of Nanoscale Size Parahydrogen Clusters. J Low Temp Phys 195, 51–59 (2019). https://doi.org/10.1007/s10909-018-2109-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-2109-7

Keywords

Navigation