Skip to main content
Log in

Charge Density Wave and Crystal Structure of \(\hbox {K}_{x}\hbox {WO}_{3}\) (\(x=0.20\) and 0.22) Prepared by Hybrid Microwave Method

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Potassium tungsten bronzes \(\hbox {K}_{x}\hbox {WO}_{3}\) (\(x=0.20\) and 0.22) with the coexistence of charge density wave (CDW) and superconductivity (SC) were prepared from \(\hbox {K}_{2}\hbox {WO}_{4},\, \hbox {WO}_{3}\) and W powders using a hybrid microwave method. The structure refinement confirmed that all samples had a pure hexagonal phase with the space group of \(P6_{3}\)/mcm. The distortion degree of W–O octahedron declines with x and is independent of synthesis condition for the same x (=0.20). The CDW transition is studied as a function of residual resistivity ratio. By increasing the crystallinity of sample, this transition can be suppressed, which is probably attributed to the interaction between CDW and defects in crystallites. The CDW transition temperature increases with x, which may be related to the decline of the distortion degree of W–O octahedron. The competition between CDW and SC is observed according to the resistivity and magnetization measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Fournel, J.P. Sorbier, M. Konczykowski, P. Monceau, Phys. Rev. Lett. 57, 2199 (1986)

    Article  ADS  Google Scholar 

  2. K. Stöwe, F.R. Wagner, J. Solid State Chem. 138, 160 (1998)

    Article  ADS  Google Scholar 

  3. T. Yokoya, T. Kiss, A. Chainani, S. Shin, M. Nohara, H. Takagi, Science 294, 2518 (2001)

    Article  ADS  Google Scholar 

  4. R.V. Coleman, B. Giambattista, P.K. Hansma, A. Johnson, W.W. McNairy, C.G. Slough, Adv. Phys. 37, 559 (1988)

    Article  ADS  Google Scholar 

  5. G. Travaglini, P. Wachter, J. Marcus, C. Schlenker, Solid State Commun. 37, 599 (1981)

    Article  ADS  Google Scholar 

  6. M. Leroux, I. Errea, M. Le Tacon, S.M. Souliou, G. Garbarino, L. Cario, A. Bosak, F. Mauri, M. Calandra, P. Rodiere, Phys. Rev. B 92, 140303 (2015)

    Article  ADS  Google Scholar 

  7. W. Ruan, P.Z. Tang, A.F. Fang, P. Cai, C. Ye, X.T. Li, W.H. Duan, N.L. Wang, Y.Y. Wang, Sci. Bull. 60, 798 (2015)

    Article  Google Scholar 

  8. M.S. Torikachvili, S.L. Bud’ko, S.A. Law, M.E. Tillman, E.D. Mun, P.C. Canfield, Phys. Rev. B 76, 235110 (2007)

    Article  ADS  Google Scholar 

  9. N.S. Sangeetha, A. Thamizhavel, C.V. Tomy, S. Basu, A.M. Awasthi, S. Ramakrishnan, D. Pal, Phys. Rev. B 86, 024524 (2012)

    Article  ADS  Google Scholar 

  10. E. Morosan, H.W. Zandbergen, B.S. Dennis, J.W.G. Bos, Y. Onose, T. Klimczuk, A.P. Ramirez, N.P. Ong, R.J. Cava, Nat. Phys. 2, 544 (2006)

    Article  Google Scholar 

  11. L.H. Cadwell, R.C. Morris, W.G. Moulton, Phys. Rev. B 23, 2219 (1981)

    Article  ADS  Google Scholar 

  12. A. Hussain, L. Kihlborg, Acta Cryst. A 32, 551 (1976)

    Article  Google Scholar 

  13. M.S. Rahman, M.M. Murshed, D. Baabe, T.M. Gesing, Cryst. Mater. 231, 11 (2016)

    Google Scholar 

  14. S. Raj, T. Sato, S. Souma, T. Takahashi, D.D. Sarma, P. Mahadevan, J.C. Campuzano, M. Greenblatt, W.H. McCarroll, Phys. Rev. B 77, 245120 (2008)

    Article  ADS  Google Scholar 

  15. D.M. Sagar, D. Fausti, S. van Smaalen, P.H.M. van Loosdrecht, Phys. Rev. B 81, 045124 (2010)

    Article  ADS  Google Scholar 

  16. A.J. Schultz, H. Horiuchi, H.B. Krause, Acta Cryst. C 42, 641 (1986)

    Article  Google Scholar 

  17. H.B. Krause, W.G. Moulton, R.C. Morris, Acta Cryst. B 41, 11 (1985)

    Article  Google Scholar 

  18. R. Poloni, E. Canadell, J.P. Pouget, Inorg. Chem. 48, 11492 (2009)

    Article  Google Scholar 

  19. J. Guo, C. Dong, L.H. Yang, G.C. Fu, J. Solid State Chem. 178, 58 (2005)

    Article  ADS  Google Scholar 

  20. C. Dong, J. Appl. Cryst. 32, 838 (1999)

    Article  Google Scholar 

  21. F. Izumi, T. Ikeda, Mater. Sci. Forum 321–324, 198 (2000)

    Article  Google Scholar 

  22. A. Ricci, J. Supercond. Nov. Magn. 29, 633 (2016)

    Article  Google Scholar 

  23. H. Shim, G. Lee, J.M. Hyun, H. Kim, New J. Phys. 17, 093026 (2015)

    Article  ADS  Google Scholar 

  24. A.M. Novello, B. Hildebrand, A. Scarfato, C. Didiot, G. Monney, A. Ubaldini, H. Berger, D.R. Bowler, P. Aebi, Ch. Renner, Phys. Rev. B 92, 081101 (2015)

    Article  ADS  Google Scholar 

  25. M. Falmbigl, D. Putzky, J. Ditto, M. Esters, S.R. Bauers, F. Ronning, D.C. Johnson, ACS Nano 9(8), 8440 (2015)

    Article  Google Scholar 

  26. H.H. Weitering, J.M. Carpinelli, A.V. Melechko, J.D. Zhang, M. Bartkowiak, E.W. Plummer, Science 285, 2107 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51302249 and 11574276).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Guo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (doc 172 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Gao, C., Bu, K. et al. Charge Density Wave and Crystal Structure of \(\hbox {K}_{x}\hbox {WO}_{3}\) (\(x=0.20\) and 0.22) Prepared by Hybrid Microwave Method. J Low Temp Phys 188, 1–10 (2017). https://doi.org/10.1007/s10909-017-1762-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-017-1762-6

Keywords

Navigation