Skip to main content
Log in

Quasi-One-Dimensional Electronic States Inside and Outside Helium-Plated Carbon Nanotubes

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

About one-half a century ago, it was realized that electrons experience a repulsive barrier when approaching the surface of condensed phases of helium, hydrogen, and neon. This led to the proposal and subsequent observation of image-potential surface-bound electronic states, which exhibit intriguing quasi-two-dimensional behavior. In the present work, we report similar quasi-one-dimensional electronic states by exploring single-wall carbon nanotubes coated both inside and outside by thin helium films. Electrons near such structures are localized in the radial direction, but free to move along the nanotube axis. The many-body aspects of the system are discussed qualitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B.E. Springett, J. Jortner, M.H. Cohen, J. Chem. Phys. 48, 2720 (1968)

    Article  ADS  Google Scholar 

  2. N.R. Kestner, J. Jortner, M.H. Cohen, S.A. Rice, Phys. Rev. 140, A56 (1965)

    Article  ADS  Google Scholar 

  3. M.W. Cole, Rev. Mod. Phys. 46, 451 (1974)

    Article  ADS  Google Scholar 

  4. E. Andrei (ed.), Two-Dimensional Electron Systems (Kluwer Academic Publishers, Dordrecht, 1997)

    Google Scholar 

  5. M.A. Woolf, G.W. Rayfield, Phys. Rev. Lett. 15, 235 (1965)

    Article  ADS  Google Scholar 

  6. H.J. Maris, J. Phys. Soc. Jpn. 77, 111008 (2008)

    Article  ADS  Google Scholar 

  7. G. Ramanan, G.R. Freeman, J. Chem. Phys. 93, 3120 (1990)

    Article  ADS  Google Scholar 

  8. G.W. Rayfield, W. Schoepe, Phys. Lett. A 34, 133 (1974)

    Article  ADS  Google Scholar 

  9. F. Ancilotto, F. Toigo, Phys. Rev. B 50, 12820 (1994)

    Article  ADS  Google Scholar 

  10. M.J. Puska, R.M. Nieminen, M. Manninen, Phys. Rev. B 24, 3037 (1981)

    Article  ADS  Google Scholar 

  11. M.W. Cole, F. Toigo, Phys. Rev. B 31, 727 (1985)

    Article  ADS  Google Scholar 

  12. E. Fermi, Il Nuovo Cimento 11, 157 (1934)

    Article  Google Scholar 

  13. M. Liebrecht, A. Del Maestro, M.W. Cole, J. Low Temp. Phys. 183, 264 (2016)

    Article  ADS  Google Scholar 

  14. L.W. Bruch, M.W. Cole, Hye-Young Kim, J. Phys. Cond. Mat. 22, 304001 (2010)

    Article  Google Scholar 

  15. G. Giuliani, G. Vignale, Quantum Theory of the Electron Liquid (Cambridge University Press, Cambridge, 2005)

    Book  Google Scholar 

  16. S. Tomonaga, Progr. Theor. Phys. 5, 544 (1950)

    Article  ADS  MathSciNet  Google Scholar 

  17. D.C. Mattis, E.H. Lieb, J. Math. Phys. 6, 304 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  18. F.D.M. Haldane, J. Phys. C 14, 2585 (1981)

    Article  ADS  Google Scholar 

  19. M.A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, M. Rigol, Rev. Mod. Phys. 83, 1405 (2011)

    Article  ADS  Google Scholar 

  20. A. Imambekov, T.L. Schmidt, L.I. Glazman, Rev. Mod. Phys. 84, 1253 (2012)

    Article  ADS  Google Scholar 

  21. T. Giamarchi, Quantum physics in One Dimension (Oxford University Press, Oxford, 2003)

    Book  MATH  Google Scholar 

  22. M. Abramowitz, I. Stegun, Handbook of Mathematical Functions (Dover Publications, Mineola, 1964)

    MATH  Google Scholar 

  23. V.V. Deshpande, M. Bockrath, Nat. Phys. 4, 314 (2008)

    Article  Google Scholar 

  24. M. Machon, S. Reich, C. Thomsen, Phys. Stat. Sol. (b) 243, 3166 (2006)

    Article  ADS  Google Scholar 

  25. D. Loss, T. Martin, Phys. Rev. B 50, 12160 (1994)

    Article  ADS  Google Scholar 

  26. A. Luther, V.J. Emery, Phys. Rev. Lett. 33, 589 (1974)

    Article  ADS  Google Scholar 

  27. T. Giamarchi, Phys. Rev. B 44, 2905 (1991)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

It is a pleasure and a privilege to dedicate this contribution to Flavio Toigo, honoring a scientist who has given important contributions in many areas of condensed matter and statistical physics. One of the authors (M. C.) is particularly delighted to acknowledge a collaborative interaction over 35 years with professor Toigo, a creator of novel ideas and a fearless calculator. One of us (M. M.) acknowledges support from Dipartimento di Fisica, Università degli Studi di Milano, the Simons Foundation, and NSF (Grant no. DMR-1409510). We also acknowledge very helpful discussions with S. Rotkin and S. Hernandez.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Liebrecht.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motta, M., Galli, D.E., Liebrecht, M. et al. Quasi-One-Dimensional Electronic States Inside and Outside Helium-Plated Carbon Nanotubes. J Low Temp Phys 185, 161–173 (2016). https://doi.org/10.1007/s10909-016-1631-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-016-1631-8

Keywords

Navigation