Skip to main content
Log in

Nanosized Electronic Cooler Combined with Superconducting Proximity Effect Thermometry

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Electronic coolers have the potential to lower the temperature of mesoscopic electronic systems well below the lattice temperature with the final goal to reach ultimately an electronic temperature in the 10 mK range. A challenging task is to design a reliable electronic thermometry for this temperature range, including extremely low power dissipation, good sensitivity and preferably a theoretical description of the response with few experimentally determined parameters. We present an experimental realization and characterization of a nano sized electronic cooler with a superconducting proximity effect thermometer. We demonstrate an improved operation mode of the thermometer using escape statistics from the superconducting to the normal state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F.C. Wellstood, C. Urbina, J. Clarke, Phys. Rev. B 49, 5942 (1994)

    Article  ADS  Google Scholar 

  2. M. Nahum, T.M. Eiles, J.M. Martinis, Appl. Phys. Lett. 65(24), 3123 (1994)

    Article  ADS  Google Scholar 

  3. M.M. Leivo, J.P. Pekola, D.V. Averin, Appl. Phys. Lett. 68(14), 1996 (1996)

    Article  ADS  Google Scholar 

  4. F. Giazotto, T.T. Heikkilä, A. Luukanen, A.M. Savin, J.P. Pekola, Rev. Mod. Phys. 78, 217 (2006)

    Article  ADS  Google Scholar 

  5. P.J. Koppinen, I.J. Maasilta, Phys. Rev. Lett. 102, 165502 (2009)

    Article  ADS  Google Scholar 

  6. J.T. Muhonen, A.O. Niskanen, M. Meschke, Y.A. Pashkin, J.S. Tsai, L. Sainiemi, S. Franssila, J.P. Pekola, Appl. Phys. Lett. 94, 073101 (2009)

    Article  ADS  Google Scholar 

  7. J. Jochum, C. Mears, S. Golwala, B. Sadoulet, J.P. Castle, M.F. Cunningham, O.B. Drury, M. Frank, S.E. Labov, F.P. Lipschultz, H. Netel, B. Neuhauser, J. Appl. Phys. 83, 3217 (1998)

    Article  ADS  Google Scholar 

  8. J.P. Pekola, D.V. Anghel, T.I. Suppula, J.K. Suoknuuti, A.J. Manninen, M. Manninen, Appl. Phys. Lett. 76, 2782 (2000)

    Article  ADS  Google Scholar 

  9. J.N. Ullom, P.A. Fisher, Physica B 284–288, 2036 (2000)

    Article  Google Scholar 

  10. J.P. Pekola, T.T. Heikkilä, A.M. Savin, J.T. Flyktman, F. Giazotto, F.W.J. Hekking, Phys. Rev. Lett. 92, 056804 (2004)

    Article  ADS  Google Scholar 

  11. A. Vasenko, F. Hekking, J. Low Temp. Phys. 154, 221 (2009)

    Article  ADS  Google Scholar 

  12. N. Vercruyssen, R. Barends, T.M. Klapwijk, J.T. Muhonen, M. Meschke, J.P. Pekola, Appl. Phys. Lett. 99, 062509 (2011)

    Article  Google Scholar 

  13. S. Rajauria, L.M.A. Pascal, P. Gandit, F.W.J. Hekking, B. Pannetier, H. Courtois, Phys. Rev. B 85, 020505 (2012)

    Article  ADS  Google Scholar 

  14. V.J. Kauppila, H.Q. Nguyen, T.T. Heikkilä, Phys. Rev. B 88, 075428 (2013)

    Article  ADS  Google Scholar 

  15. J.T. Peltonen, P. Virtanen, M. Meschke, J.V. Koski, T.T. Heikkilä, J.P. Pekola, Phys. Rev. Lett. 105, 097004 (2010)

    Article  ADS  Google Scholar 

  16. J.T. Peltonen, J.T. Muhonen, M. Meschke, N.B. Kopnin, J.P. Pekola, Phys. Rev. B 84, 220502 (2011)

    Article  ADS  Google Scholar 

  17. P.J. Lowell, G.C. O’Neil, J.M. Underwood, J.N. Ullom, Appl. Phys. Lett. 102, 082601 (2013)

    Article  ADS  Google Scholar 

  18. H.Q. Nguyen, T. Aref, V.J. Kauppila, M. Meschke, C.B. Winkelmann, H. Courtois, J.P. Pekola, New J. Phys. 15, 085013 (2013)

    Article  ADS  Google Scholar 

  19. J.V. Koski, J.T. Peltonen, M. Meschke, J.P. Pekola, Appl. Phys. Lett. 98, 203501 (2011)

    Article  ADS  Google Scholar 

  20. A.S. Vasenko, E.V. Bezuglyi, H. Courtois, F.W.J. Hekking, Phys. Rev. B 81, 094513 (2010)

    Article  ADS  Google Scholar 

  21. S. Rajauria, P. Gandit, F. Hekking, B. Pannetier, H. Courtois, J. Low Temp. Phys. 154, 211 (2009)

    Article  ADS  Google Scholar 

  22. O.P. Saira, M. Meschke, F. Giazotto, A.M. Savin, M. Möttönen, J.P. Pekola, Phys. Rev. Lett. 99, 027203 (2007)

    Article  ADS  Google Scholar 

  23. P. Dubos, H. Courtois, B. Pannetier, F.K. Wilhelm, A.D. Zaikin, G. Schön, Phys. Rev. B 63, 064502 (2001)

    Article  ADS  Google Scholar 

  24. T.T. Heikkilä, J. Särkkä, F.K. Wilhelm, Phys. Rev. B 66, 184513 (2002)

    Article  ADS  Google Scholar 

  25. A.F. Andreev, Sov. Phys. JETP. 19, 1228 (1964)

    Google Scholar 

  26. T.T. Heikkilä, F. Giazotto, Phys. Rev. B 79, 094514 (2009)

    Article  ADS  Google Scholar 

  27. H. Courtois, M. Meschke, J.T. Peltonen, J.P. Pekola, Phys. Rev. Lett. 101, 067002 (2008)

    Article  ADS  Google Scholar 

  28. A.D. Zaikin, G.F. Zharkov, Sov. J. Low Temp. Phys. 7, 184 (1981)

    Google Scholar 

  29. G.J. Dolan, Appl. Phys. Lett. 31, 337 (1971)

    Article  ADS  Google Scholar 

  30. K. Irwin, G. Hilton, J. Martinis, B. Cabrera, Nucl. Instrum. Methods Phys. Res. A 370, 177 (1996)

    Article  ADS  Google Scholar 

  31. S.J. MacLeod, S. Kafanov, J.P. Pekola, Appl. Phys. Lett. 95, 052503 (2009)

    Article  ADS  Google Scholar 

  32. M. Meschke, J. Peltonen, H. Courtois, J. Pekola, J. Low Temp. Phys. 154, 190 (2009)

    Article  ADS  Google Scholar 

  33. J.P. Pekola, J.P. Kauppinen, Cryogenics 34, 843 (1994)

    Article  ADS  Google Scholar 

  34. F. Giazotto, T.T. Heikkilä, G.P. Pepe, P. Helistö, A. Luukanen, J.P. Pekola, Appl. Phys. Lett. 92, 162507 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

I acknowledge the support of the European Community’s FP7 Programme under Grant Agreement No. 228464 (MICROKELVIN, Capacities Specic Programme). I thank J. P. Pekola, T. T. Heikkilä, J. T. Peltonen, J. T. Muhonen and H. Q. Nguyen for discussions. The samples are fabricated in the Micronova Nanofabrication Center of Aalto University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Meschke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meschke, M. Nanosized Electronic Cooler Combined with Superconducting Proximity Effect Thermometry. J Low Temp Phys 175, 838–849 (2014). https://doi.org/10.1007/s10909-014-1179-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-014-1179-4

Keywords

Navigation