Skip to main content
Log in

Tachyon Condensation and Brane Annihilation in Bose-Einstein Condensates: Spontaneous Symmetry Breaking in Restricted Lower-Dimensional Subspace

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In brane cosmology, the Big Bang is hypothesized to occur by the annihilation of the brane–anti-brane pair in a collision, where the branes are three-dimensional objects in a higher-dimensional Universe. Spontaneous symmetry breaking accompanied by the formation of lower-dimensional topological defects, e.g. cosmic strings, is triggered by the so-called ‘tachyon condensation’, where the existence of tachyons is attributable to the instability of the brane–anti-brane system. Here, we discuss the closest analogue of the tachyon condensation in atomic Bose–Einstein condensates. We consider annihilation of domain walls, namely branes, in strongly segregated two-component condensates, where one component is sandwiched by two domains of the other component. In this system, the process of the brane annihilation can be projected effectively as ferromagnetic ordering dynamics onto a two-dimensional space. Based on this correspondence, three-dimensional formation of vortices from a domain-wall annihilation is considered to be a kink formation due to spontaneous symmetry breaking in the two-dimensional space. We also discuss a mechanism to create a ‘vorton’ when the sandwiched component has a vortex string bridged between the branes. We hope that this study motivates experimental researches to realize this exotic phenomenon of spontaneous symmetry breaking in superfluid systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Sen, Int. J. Mod. Phys. A 20, 5513–5656 (2005)

    Article  ADS  MATH  Google Scholar 

  2. J. Polchinski, String Theory (Cambridge University Press, Cambridge, 1998). Vols. 1 and 2

    Book  Google Scholar 

  3. G. Dvali, Q. Shafi, S. Solganik, arXiv:hep-th/0105203

  4. D. Langlois, Prog. Theor. Phys. Suppl. 148, 181–212 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  5. F. Quevedo, Class. Quantum Gravity 19, 5721 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. L. McAllister, E. Silverstein, Gen. Relativ. Gravit. 40, 565–605 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. N. Jones, H. Stoica, S.-H.H. Tye, J. High Energy Phys. 0207, 051 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  8. S. Sarangi, S.-H.H. Tye, Phys. Lett. B 536, 185–192 (2002)

    Article  ADS  MATH  Google Scholar 

  9. G. Dvali, A. Vilenkin, J. Cosmol. Astropart. Phys. 0403, 010 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  10. T.W.B. Kibble, J. Phys. A 9, 1387–1398 (1976)

    Article  ADS  MATH  Google Scholar 

  11. W.H. Zurek, Nature 317, 505–508 (1985)

    Article  ADS  Google Scholar 

  12. W.H. Zurek, Phys. Rep. 276, 177–221 (1996)

    Article  ADS  Google Scholar 

  13. A. Vilenkin, E.P.S. Shellard, Cosmic Strings and Other Topological Defects (Cambridge University Press, Cambridge, 1994)

    MATH  Google Scholar 

  14. P.C. Hendry, N.S. Lawson, R.A.M. Lee, P.V.E. Mcclintock, C.D.H. Williams, Nature 368, 315–317 (1994)

    Article  ADS  Google Scholar 

  15. M.J. Bowick, L. Chandar, E.A. Schiff, A.M. Srivastava, Science 263, 943–945 (1994)

    Article  ADS  Google Scholar 

  16. C. Bäuerle, Yu.M. Bunkov, S.N. Fisher, H. Godfrin, G.R. Pickett, Nature 382, 332–334 (1996)

    Article  ADS  Google Scholar 

  17. V.M.H. Ruutu, V.B. Eltsov, A.J. Gill, T.W.B. Kibble, M. Krusius, Yu.G. Makhlin, B. Placais, G.E. Volovik, W. Xu, Nature 382, 334–336 (1996)

    Article  ADS  Google Scholar 

  18. R. Carmi, E. Polturak, G. Koren, Phys. Rev. Lett. 84, 4966–4969 (2000)

    Article  ADS  Google Scholar 

  19. A. Maniv, E. Polturak, G. Koren, Phys. Rev. Lett. 91, 197001 (2003)

    Article  ADS  Google Scholar 

  20. R. Monaco, J. Mygind, M. Aaroe, R.J. Rivers, V.P. Koshelets, Phys. Rev. Lett. 96, 180604 (2006)

    Article  ADS  Google Scholar 

  21. L.E. Sadler, J.M. Higbie, S.R. Leslie, M. Vengalattore, D.M. Stamper-Kurn, Nature 443, 312–315 (2006)

    Article  ADS  Google Scholar 

  22. C.N. Weiler, T.W. Neely, D.R. Scherer, A.S. Bradley, M.J. Davis, B.P. Anderson, Nature 455, 948–951 (2008)

    Article  ADS  Google Scholar 

  23. H. Takeuchi, K. Kasamatsu, M. Tsubota, M. Nitta, arXiv:1205.2330

  24. H. Takeuchi, K. Kasamatsu, M. Nitta, M. Tsubota, J. Low Temp. Phys. 162, 243–249 (2011)

    Article  ADS  Google Scholar 

  25. M. Nitta, K. Kasamatsu, M. Tsubota, H. Takeuchi, Phys. Rev. A 85, 053639 (2012)

    Article  ADS  Google Scholar 

  26. C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases, 2nd edn. (Cambridge University Press, Cambridge, 2008)

    Book  Google Scholar 

  27. S.B. Papp, J.M. Pino, C.E. Wieman, Phys. Rev. Lett. 101, 040402 (2008)

    Article  ADS  Google Scholar 

  28. B.P. Anderson, P.C. Haljan, C.A. Regal, D.L. Feder, L.A. Collins, C.W. Clark, E.A. Cornell, Phys. Rev. Lett. 86, 2926–2929 (2001)

    Article  ADS  Google Scholar 

  29. K. Kasamatsu, H. Takeuchi, M. Nitta, M. Tsubota, J. High Energy Phys. 11, 068 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  30. H. Takeuchi, N. Suzuki, K. Kasamatsu, H. Saito, M. Tsubota, Phys. Rev. B 81, 094517 (2010)

    Article  ADS  Google Scholar 

  31. D.I. Bradley, S.N. Fisher, A.M. Guénault, R.P. Haley, J. Kopu, H. Martin, G.R. Pickett, J.E. Roberts, V. Tsepelin, Nat. Phys. 4, 46–49 (2008)

    Article  Google Scholar 

  32. D.I. Bradley, S.N. Fisher, A.M. Guénault, R.P. Haley, J. Kopu, H. Martin, G.R. Pickett, J.E. Roberts, V. Tsepelin, J. Phys. Soc. Jpn. 77, 111005 (2008)

    Article  ADS  Google Scholar 

  33. R.L. Davis, E.P.S. Shellard, Phys. Lett. B 209, 485 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  34. E. Radu, M.S. Volkov, Phys. Rep. 468, 101 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  35. A.J. Bray, Adv. Phys. 43, 357–459 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  36. M.R. Andrews, C.G. Townsend, H.-J. Miesner, D.S. Durfee, D.M. Kurn, W. Ketterle, Science 275, 637 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by KAKENHI from JSPS (Grant Nos. 21340104, 21740267 and 23740198). This work was also supported by the “Topological Quantum Phenomena” (Nos. 22103003 and 23103515) Grant-in Aid for Scientific Research on Innovative Areas from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromitsu Takeuchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takeuchi, H., Kasamatsu, K., Tsubota, M. et al. Tachyon Condensation and Brane Annihilation in Bose-Einstein Condensates: Spontaneous Symmetry Breaking in Restricted Lower-Dimensional Subspace. J Low Temp Phys 171, 443–454 (2013). https://doi.org/10.1007/s10909-012-0816-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-012-0816-z

Keywords

Navigation