Skip to main content
Log in

Phonon Dispersion in the Fcc Metals Ca, Sr and Yb

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Within the harmonic approximation and adiabatic approximation, the expressions of atomic force constants have been derived. Phonon dispersion curves along four major symmetry directions and four off-symmetry directions have been simulated for alkaline-earth metals Ca, Sr and the rare-earth metal Yb by combining the modified analytic embedded atom method with the theory of lattice dynamics. The simulated phonon dispersion curves for the fcc metals Ca, Sr and Yb along four major symmetry directions have been compared to the corresponding experimental data. The results show that the simulated results are general consistent with available experimental results, with a maximum deviation of approximately 14 %. The simulated phonon frequencies of the fcc metals Ca, Sr and Yb lay a significant foundation for guiding and judging relative experiment results, especially for the phonon dispersion relation along off-symmetry directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R.V. Chepulskii, S. Curtarolo, Phys. Rev. B 79, 134203 (2009)

    Article  ADS  Google Scholar 

  2. Z.Y. Zeng, C.E. Hu, L.C. Cai, J. Phys. Chem. B 114, 298 (2010)

    Article  Google Scholar 

  3. O. Hellman, I.A. Abrikosov, S.I. Simak, Phys. Rev. B 84, 180301 (2011)

    Article  ADS  Google Scholar 

  4. N.V. Krainyukova, J. Low Temp. Phys. 162, 441 (2011)

    Article  ADS  Google Scholar 

  5. T. Mehaddene, E. Kentzinger, B. Hennion, Phys. Rev. B 69, 24304 (2004)

    Article  ADS  Google Scholar 

  6. M. Astuto, P. Giura, M. Kirsch, Physica B 316–317, 150 (2002)

    Article  Google Scholar 

  7. J. Mizuki, C. Stassis, Phys. Rev. B 32, 8372 (1985)

    Article  ADS  Google Scholar 

  8. N. Singh, P. Singh, Phys. Status Solidi (b) 158, 433 (1990)

    Article  ADS  Google Scholar 

  9. S. Özdemir Kart, M. Tomak, T. Cagin, Physica B 355, 382 (2005)

    Article  ADS  Google Scholar 

  10. J.E. Hearn, R.L. Johnston, S. Leoni, J. Chem. Soc. Faraday Trans. 92, 425 (1996)

    Article  Google Scholar 

  11. M.I. Baskes, Phys. Rev. Lett. 59, 2666 (1987)

    Article  ADS  Google Scholar 

  12. R. Pasianot, D. Farkas, E.J. Savino, Phys. Rev. B 43, 6952 (1991)

    Article  ADS  Google Scholar 

  13. B.W. Zhang, Y.F. Ouyang, Phys. Rev. B 48, 3022 (1993)

    ADS  Google Scholar 

  14. B.W. Zhang, Y.F. Ouyang, S.Z. Liao, Physica B 262, 218 (1999)

    Article  ADS  Google Scholar 

  15. Y.F. Ouyang, B.W. Zhang, S.Z. Liao, Z. Phys. B 101, 161 (1996)

    Article  Google Scholar 

  16. F. Ma, J.M. Zhang, K.W. Xu, Surf. Interface Anal. 36, 355 (2004)

    Article  Google Scholar 

  17. H. Xin, J.M. Zhang, X.M. Wei, Surf. Interface Anal. 37, 608 (2005)

    Article  Google Scholar 

  18. J.M. Zhang, X.M. Wei, H. Xin, Surf. Interface Anal. 36, 1500 (2004)

    Article  Google Scholar 

  19. J.M. Zhang, X.J. Zhang, K.W. Xu, J. Low Temp. Phys. 150, 730 (2008)

    Article  ADS  Google Scholar 

  20. Y.N. Wen, J.M. Zhang, K.W. Xu, Colloids Surf. A 304, 67 (2007)

    Article  Google Scholar 

  21. M. Born, K. Huang, Dynamical Theory of Crystal Lattices (Clarendon Press, Oxford, 1954)

    MATH  Google Scholar 

  22. C. Stassis, J. Zaretsky, D.K. Misemer, Phys. Rev. B 27, 3303 (1983)

    Article  ADS  Google Scholar 

  23. U. Buchenau, M. Heiroth, H.R. Schober, Phys. Rev. B 30, 3502 (1984)

    Article  ADS  Google Scholar 

  24. C. Stassis, C.-K. Loong, C. Theisen, Phys. Rev. B 26, 4106 (1982)

    Article  ADS  Google Scholar 

  25. J.K. Baria, A.R. Jani, Physica B 405, 2065 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the National Natural Science Foundation of China (grant no. 61078057) for providing financial support to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Le Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, XJ., Chen, CL. Phonon Dispersion in the Fcc Metals Ca, Sr and Yb. J Low Temp Phys 169, 40–50 (2012). https://doi.org/10.1007/s10909-012-0636-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-012-0636-1

Keywords

Navigation