Skip to main content
Log in

The Sensitivity of the Vortex Filament Method to Different Reconnection Models

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We present a detailed analysis on the effect of using different algorithms to model the reconnection of vortices in quantum turbulence, using the thin-filament approach. We examine differences between four main algorithms for the case of turbulence driven by a counterflow. In calculating the velocity field we use both the local induction approximation (LIA) and the Biot-Savart integral. We show that results of Biot-Savart simulations are not sensitive to the particular reconnection method used, but LIA results are.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R.J. Donnelly, Quantized Vortices in Helium II (Cambridge University Press, Cambridge, 1991)

    Google Scholar 

  2. C.F. Barenghi, Y.A. Sergeev (eds.), Vortices and Turbulence at Very Low Temperatures. CISM Courses and Lecture Notes (Springer, Berlin, 2008)

    Google Scholar 

  3. W.P. Halperin, M. Tsubota (eds.), Progress in Low Temperature Physics: Quantum Turbulence, vol. XVI (Elsevier, Amsterdam, 2008)

    Google Scholar 

  4. J. Maurer, P. Tabeling, Europhys. Lett. 43, 29 (1998)

    Article  ADS  Google Scholar 

  5. P.-E. Roche, P. Diribarne, T. Didelot, O. Français, L. Rousseau, H. Willaime, Europhys. Lett. 77, 66002 (2007)

    Article  ADS  Google Scholar 

  6. M. Blaz̆ková, D. Schmoranzer, L. Skrbek, W.F. Vinen, Phys. Rev. B 79, 054522 (2009)

    Article  ADS  Google Scholar 

  7. M.R. Smith, R.J. Donnelly, N. Goldenfeld, W.F. Vinen, Phys. Rev. Lett. 71, 2583 (1993)

    Article  ADS  Google Scholar 

  8. W.F. Vinen, Proc. R. Soc. A, Math. Phys. Eng. Sci. 240, 114 (1957)

    Article  ADS  Google Scholar 

  9. W.F. Vinen, Proc. R. Soc. A, Math. Phys. Eng. Sci. 240, 128 (1957)

    Article  ADS  Google Scholar 

  10. W.F. Vinen, Proc. R. Soc. A, Math. Phys. Eng. Sci. 242, 494 (1957)

    Article  ADS  Google Scholar 

  11. W.F. Vinen, Proc. R. Soc. A, Math. Phys. Eng. Sci. 243, 400 (1957)

    Article  ADS  Google Scholar 

  12. M.S. Paoletti, M.E. Fisher, K.R. Sreenivasan, D.P. Lathrop, Phys. Rev. Lett. 101, 154501 (2008)

    Article  ADS  Google Scholar 

  13. J.T. Tough, Progress in Low Temperature Physics, vol. VIII (Elsevier, Amsterdam, 2008)

    Google Scholar 

  14. G.P. Bewley, D.P. Lathrop, K.R. Sreenivasan, Nature 441, 588 (2006)

    Article  ADS  Google Scholar 

  15. T. Zhang, S.W. Van Sciver, Nat. Phys. 1, 36 (2005)

    Article  Google Scholar 

  16. D.I. Bradley, S.N. Fisher, A.M. Guénault, M.R. Lowe, G.R. Pickett, A. Rahm, R.C.V. Whitehead, Phys. Rev. Lett. 93, 235302 (2004)

    Article  ADS  Google Scholar 

  17. W. Guo, S.B. Cahn, J.A. Nikkel, W.F. Vinen, D.N. McKinsey, Phys. Rev. Lett. 105, 045301 (2010)

    Article  ADS  Google Scholar 

  18. K.W. Schwarz, Phys. Rev. B 38, 2398 (1988)

    Article  ADS  Google Scholar 

  19. D.C. Samuels, Phys. Rev. B 46, 11714 (1992)

    Article  ADS  Google Scholar 

  20. A.T.A.M. de Waele, R.G.K.M. Aarts, Phys. Rev. Lett. 72, 482 (1994)

    Article  ADS  Google Scholar 

  21. C.F. Barenghi, D.C. Samuels, G.H. Bauer, R.J. Donnelly, Phys. Fluids 9, 2631 (1997)

    Article  ADS  Google Scholar 

  22. M. Tsubota, T. Araki, C.F. Barenghi, Phys. Rev. Lett. 90, 205301 (2003)

    Article  ADS  Google Scholar 

  23. V.B. Eltsov, A.I. Golov, R. de Graaf, R. Hänninen, M. Krusius, V.S. L’vov, R.E. Solntsev, Phys. Rev. Lett. 99, 265301 (2007)

    Article  ADS  Google Scholar 

  24. L. Kondaurova, S.K. Nemirovskii, J. Low Temp. Phys. 138, 555 (2005)

    Article  ADS  Google Scholar 

  25. D. Kivotides, J.C. Vassilicos, D.C. Samuels, C.F. Barenghi, Phys. Rev. Lett. 86, 3080 (2001)

    Article  ADS  Google Scholar 

  26. K. Morris, J. Koplik, D.W.I. Rouson, Phys. Rev. Lett. 101, 015301 (2008)

    Article  ADS  Google Scholar 

  27. D. Kivotides, Phys. Rev. Lett. 96, 175301 (2006)

    Article  ADS  Google Scholar 

  28. A.W. Baggaley, C.F. Barenghi, Phys. Rev. B 83, 134509 (2011)

    Article  ADS  Google Scholar 

  29. A.W. Baggaley, C.F. Barenghi, Phys. Rev. B 84, 020504 (2011)

    Article  ADS  Google Scholar 

  30. D. Kivotides, C.F. Barenghi, Y.A. Sergeev, Phys. Rev. B 77, 014527 (2008)

    Article  ADS  Google Scholar 

  31. A.P. Finne, T. Araki, R. Blaauwgeers, V.B. Eltsov, N.B. Kopnin, M. Krusius, L. Skrbek, M. Tsubota, G.E. Volovik, Nature 424, 1022 (2003)

    Article  ADS  Google Scholar 

  32. P.G. Saffman, Vortex Dynamics (Cambridge University Press, Cambridge, 1995)

    Google Scholar 

  33. C.F. Barenghi, R.J. Donnelly, W.F. Vinen, J. Low Temp. Phys. 52, 189 (1983)

    Article  ADS  Google Scholar 

  34. R.J. Donnelly, C.F. Barenghi, J. Phys. Chem. Ref. Data 27, 1217 (1998)

    Article  ADS  Google Scholar 

  35. L.S. Da Rios, Rend. Circ. Mat. Palermo 22, 117 (1905)

    Article  Google Scholar 

  36. R.J. Arms, F.R. Hama, Phys. Fluids 8, 553 (1965)

    Article  ADS  Google Scholar 

  37. M.S. Paoletti, M.E. Fisher, D.P. Lathrop, Physica D 239, 1367 (2010)

    ADS  MATH  Google Scholar 

  38. J. Koplik, H. Levine, Phys. Rev. Lett. 71, 1375 (1993)

    Article  ADS  Google Scholar 

  39. R. Tebbs, A.J. Youd, C.F. Barenghi, J. Low Temp, Physics 162, 314 (2011)

    Google Scholar 

  40. R.M. Kerr, Phys. Rev. Lett. 106, 224501 (2011)

    Article  ADS  Google Scholar 

  41. M. Kursa, K. Bajer, T. Lipniacki, Phys. Rev. B 83, 014515 (2011)

    Article  ADS  Google Scholar 

  42. R.P. Feynman, Prog. Low Temp. Phys. 1, 17 (1955)

    Article  Google Scholar 

  43. H. Adachi, S. Fujiyama, M. Tsubota, Phys. Rev. B 81, 104511 (2010)

    Article  ADS  Google Scholar 

  44. S. Fujiyama, A. Mitani, M. Tsubota, D.I. Bradley, S.N. Fisher, A.M. Guénault, R.P. Haley, G.R. Pickett, V. Tsepelin, Phys. Rev. B 81, 180512 (2010)

    Article  ADS  Google Scholar 

  45. M. Tsubota, T. Araki, S.K. Nemirovskii, Phys. Rev. B 62, 11751 (2000)

    Article  ADS  Google Scholar 

  46. M. Tsubota, H. Adachi, J. Low Temp. Phys. 162, 367 (2011)

    Article  ADS  Google Scholar 

  47. M. Leadbeater, T. Winiecki, D.C. Samuels, C.F. Barenghi, C.S. Adams, Phys. Rev. Lett. 86, 1410 (2001)

    Article  ADS  Google Scholar 

  48. K. Childers, J.T. Tough, Phys. Rev. B 13, 1040 (1976)

    Article  ADS  Google Scholar 

  49. H. Adachi, M. Tsubota, J. Low Temp. Phys. 158, 422 (2010)

    Article  ADS  Google Scholar 

  50. L. Kondaurova, S.K. Nemirovskii, J. Low Temp. Phys. 150, 415 (2008)

    Article  ADS  Google Scholar 

  51. E. Kozik, B. Svistunov, Phys. Rev. B 77, 060502 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank C.F. Barenghi for useful and stimulating discussions. The author acknowledges the comments of the anonymous referees, which significantly improved both the presentation and scope of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. W. Baggaley.

Additional information

Work supported by the Leverhulme Trust.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baggaley, A.W. The Sensitivity of the Vortex Filament Method to Different Reconnection Models. J Low Temp Phys 168, 18–30 (2012). https://doi.org/10.1007/s10909-012-0605-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-012-0605-8

Keywords

Navigation