Skip to main content
Log in

Reduced Graphene Oxide / Strontium Titanate—Investigation of Improved Photoactivity

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Strontium titanate is a ternary n-type semiconductor that has recently been identified as a promising material for many photocatalytic applications such as degradation of organic pollutants or oxygen evolution reaction, especially because of high durability. However, SrTiO3 has not demonstrated high photoactivity and therefore many approaches have been studied towards improving its photo-efficiency. One of them is combining it with graphene oxide, which demonstrated huge improvement in overall photocatalytic activity, and the reasons of this effect have not yet been fully identified. In this work, we characterize SrTiO3/ graphene oxide photomaterials synthesized by a straightforward hydrothermal procedure and for the first time report many of the quintessential material features that are relevant to improved photocatalytic activity towards photocatalytic degradation of toluene. Our results provide important insights into the efficiency of charge separation, carrier transport, and photostability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. M.A. Bin Adnan, K. Arifin, L.J. Minggu, M.B. Kassim, Int. J. Hydrog. Energy 43, 23209 (2018)

    Article  CAS  Google Scholar 

  2. M. Milanović, I. Stijepović, L.M. Nikolić, Process. Application Ceram. 4, 69 (2010)

    Article  Google Scholar 

  3. N.R. Abdul Rahman, L. Muniandy, F. Adam, A. Iqbal, E.P. Ng, H.L. Lee, J. Photochem. Photobiol., A 375, 219 (2019)

    Article  CAS  Google Scholar 

  4. T. Baran, S. Wojtyła, A. Vertova, A. Minguzzi, S. Rondinini, J. Electroanal. Chem 808, 395 (2018)

    Article  CAS  Google Scholar 

  5. A. Kumar, V.N. Rao, A. Kumar, M.V. Shankar, V. Krishnan, ChemPhotoChem 4, 427 (2020)

  6. Y. Kim, M. Watanabe, J. Matsuda, J.T. Song, A. Takagaki, A. Staykov, T. Ishihara, Appl. Catal. B 278, 119292 (2020)

    Article  CAS  Google Scholar 

  7. K. Yu, C. Zhang, Y. Chang, Y. Feng, Z. Yang, T. Yang, L.-L. Lou, S. Liu, Appl. Catal. B 200, 514 (2017)

    Article  CAS  Google Scholar 

  8. S. Ouyang, P. Li, H. Xu, H. Tong, L. Liu, J. Ye, ACS Appl. Mater. Interfaces 6, 22726 (2014)

    Article  CAS  PubMed  Google Scholar 

  9. B. Han, L. Wu, J. Li, X. Wang, Q. Peng, N. Wang, X. Li, Int. J. Hydrog. Energy 45, 1559 (2020)

    Article  CAS  Google Scholar 

  10. S. Patial, V. Hasija, P. Raizada, P. Singh, A.A.P. Khan, Singh, A.M. Asiri, J. Environ. Chem. Eng. 8, 103791 (2020)

    Article  CAS  Google Scholar 

  11. T.K. Townsend, N.D. Browning, F.E. Osterloh, ACS Nano 6, 7420 (2012)

    Article  CAS  PubMed  Google Scholar 

  12. U.S. Shenoy, H. Bantawal, D.K. Bhat, J. Phys. Chem. C 122, 27567 (2018)

    Article  CAS  Google Scholar 

  13. K. Kato, J. Jiang, Y. Sakata, A. Yamakata, ChemCatChem 11, 6349 (2019)

    Article  CAS  Google Scholar 

  14. B.W. Roehrich, R. Han, F.E. Osterloh, J. Photochem. Photobiol., A 400, 112705 (2020)

    Article  CAS  Google Scholar 

  15. A.K. Wahab, T. Odedairo, J. Labis, M. Hedhili, A. Delavar, H. Idriss, Appl. Petrochem. Res. 3, 83 (2013)

    Article  CAS  Google Scholar 

  16. J. Han, F. Dai, Y. Liu, R. Zhao, L. Wang, S. Feng, Appl. Surf. Sci 467–468, 1033 (2019)

    Article  Google Scholar 

  17. S. Wojtyła, T. Baran, Nano Select 2, 2021, 389-397

  18. S. Wojtyła, K. Szmit, T. Baran, J. Inorg. Organomet. Polym. 28, 492 (2018)

    Article  Google Scholar 

  19. P.M. Martins, C.G. Ferreira, A.R. Silva, B. Magalhães, M.M. Alves, L. Pereira, P.A.A.P. Marques, M. Melle-Franco, S. Lanceros-Méndez, Compos. Part B: Eng. 145, 39 (2018)

    Article  CAS  Google Scholar 

  20. K. Thakur, B. Kandasubramanian, J. Chem. Eng. Data 64, 833 (2019)

    Article  CAS  Google Scholar 

  21. A. Iwase, Y.H. Ng, Y. Ishiguro, A. Kudo, R. Amal, J. Am. Chem. Soc. 133, 11054 (2011)

    Article  CAS  PubMed  Google Scholar 

  22. M. Ahmadi, M.S. Seyed Dorraji, M.H. Rasoulifard, A.R. Amani-Ghadim, Sep. Purif. Technol 228, 115771 (2019)

    Article  CAS  Google Scholar 

  23. C.-W. Chang, C. Hu, Chem. Eng. J 383, 123116 (2020)

    Article  CAS  Google Scholar 

  24. P. Mohammadi, F. Ghorbani-Shahna, A. Bahrami, A.A. Rafati, M. Farhadian, J. Photochem. Photobiol., A 394, 112460 (2020)

    Article  CAS  Google Scholar 

  25. G.-L. He, Y.-H. Zhong, M.-J. Chen, X. Li, Y.-P. Fang, Y.-H. Xu, J. Mol. Catal. A: Chem 423, 70 (2016)

    Article  CAS  Google Scholar 

  26. T. Xian, H. Yang, L. Di, J. Ma, H. Zhang, J. Dai, Nanoscale Res. Lett. 9, 327 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  27. Y.-C. Yang, L. Xu, W.-Q. Huang, C.-Y. Luo, G.-F. Huang, P. Peng, J. Phys. Chem. C 119, 19095 (2015)

    Article  CAS  Google Scholar 

  28. X. Wang, B. Liu, Q. Lu, Q. Qu, J. Chromatogr. A 1362, 1 (2014)

    Article  CAS  PubMed  Google Scholar 

  29. J. Jo, S. Lee, J. Gim, J. Song, S. Kim, V. Mathew, M.H. Alfaruqi, S. Kim, J. Lim, J. Kim, Royal Soc. Open Sci. 6, 181978 (2019)

    Article  CAS  Google Scholar 

  30. H. Trabelsi, M. Bejar, E. Dhahri, M.P.F. Graça, M.A. Valente, M.J. Soares, N.A. Sobolev, Appl. Surf. Sci 426, 386 (2017)

    Article  CAS  Google Scholar 

  31. A. Wojcik, P.V. Kamat, ACS Nano 4, 6697 (2010)

    Article  CAS  PubMed  Google Scholar 

  32. P. She, S. Yin, Q. He, X. Zhang, K. Xu, Y. Shang, X. Men, S. Zeng, H. Sun, Z. Liu, Electrochim. Acta 246, 35 (2017)

    Article  CAS  Google Scholar 

  33. I.V. Lightcap, T.H. Kosel, P.V. Kamat, Nano Lett. 10, 577 (2010)

    Article  CAS  PubMed  Google Scholar 

  34. Y.H. Ng, I.V. Lightcap, K. Goodwin, M. Matsumura, P.V. Kamat, J. Phys. Chem. Lett. 1, 2222 (2010)

    Article  CAS  Google Scholar 

  35. R. Al-Gaashani, A. Najjar, Y. Zakaria, S. Mansour, M.A. Atieh, Ceram. Int 45, 14439 (2019)

    Article  CAS  Google Scholar 

  36. F. Werfel, O. Brümmer, Phys. Scr. 28, 92 (1983)

    Article  CAS  Google Scholar 

  37. J. Szlachetko, K. Michalow-Mauke, M. Nachtegaal, J. Sa, J. Chem. Sci. 126, 511 (2014)

    Article  CAS  Google Scholar 

  38. A. Rubano, D. Paparo, F.M. Granozio,. Marrucci, U. Scotti di Uccio, and L. J. Appl. Phys 106, 103515 (2009)

    Article  Google Scholar 

  39. B. Tang, H. Chen, H. Peng, Z. Wang, W. Huang, Nanomaterials 8, 105 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  40. K. Zhou, Y. Zhu, X. Yang, X. Jiang, C. Li, New. J. Chem. 35, 353 (2011)

    Article  CAS  Google Scholar 

Download references

Funding

This work was co-financed from European Funds from the Regional Operational Programme for the Małopolska Region for the years 2014–2020 (grant no. RPMP.01.02.01-12-0401/17 − 00).

Author information

Authors and Affiliations

Authors

Contributions

Authors contributed equally to the study conception, design, analysis, data collection and writing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tomasz Baran.

Ethics declarations

Conflict of interest

No conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baran, T., Wojtyła, S. Reduced Graphene Oxide / Strontium Titanate—Investigation of Improved Photoactivity. J Inorg Organomet Polym 33, 1603–1611 (2023). https://doi.org/10.1007/s10904-023-02583-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-023-02583-2

Keywords