Skip to main content

Advertisement

Log in

Experimental and Theoretical Correlation of Modulated Architectures of β-Ag2MoO4 Microcrystals: Effect of Different Synthesis Routes on the Morphology, Optical, Colorimetric, and Photocatalytic Properties

  • Research
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this paper, the effect of different synthesis methods, such as controlled precipitation (CP), sonochemical, hot solution ion injection with fast cooling, and conventional hydrothermal in obtaining beta-disilver molybdate (β-Ag2MoO4) are explained in details. X-ray diffraction patterns, Rietveld refinement data, cluster modeling, micro-Raman, and Fourier transform infrared spectroscopies confirmed that all β-Ag2MoO4 crystals have a spinel-like cubic structure, space group (Fd \(\overline{3 }\) m), and symmetry point group (\({O}_{h}^{7}\)). Field emission scanning electron microscopy (FE-SEM) images showed that through different synthetic routes, it is possible to obtain monophasic crystals, such as regular/irregular polyhedrons (cubes, cuboctahedron, trapezohedron, rhombic dodecahedron), potatoes, and non-uniform. The crystal shape observed experimentally was modeled based on Rietveld refinement data and FE-SEM images obtained by KrystalShaper program. First-principles quantum mechanical calculations based on density functional theory were employed to modulate the crystals’ surfaces and to obtain their surface energy (Esurf) values. From these Esurf values in association with the Wulff construction, the evolution of the crystals shape was achieved correlating with the experimental results when different synthesis methods are used. Ultraviolet–Visible (UV–Vis) spectroscopy measurements in absorbance mode showed three main absorptions (280, 310, and 340 nm), while the UV–Vis analyses in diffuse reflectance mode showed a tail of energy absorption in the UV spectrum range (3.25 eV and 3.3 eV). The quantitative data from the colorimetric analysis indicated that the β-Ag2MoO4 crystals are desirable for developing inorganic pigments with a beige to brown shade. Photocatalytic assays were performed using four lamps: UV-C, UV-B, UV-A, and visible light. The β-Ag2MoO4 crystals prepared by the CP method showed a higher degradation rate at 85.12% for the Rhodamine B dye solution under 240 min exposure to UV-C light.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. K. Maeda, F. Takeiri, G. Kobayashi, S. Matsuishi, H. Ogino, S. Ida, T. Mori, Y. Uchimoto, S. Tanabe, T. Hasegawa, N. Imanaka, H. Kageyama, Bull. Chem. Soc. Jpn. (2022). https://doi.org/10.1246/bcsj.20210351

    Article  Google Scholar 

  2. M. Humayun, H. Ullah, M. Usman, A. Habibi-Yangjeh, A. Ali Tahir, C. Wang, W. Luo, J. Energy Chem. (2022). https://doi.org/10.1016/j.jechem.2021.08.023

    Article  Google Scholar 

  3. Q. Han, Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2020.127877

    Article  PubMed  PubMed Central  Google Scholar 

  4. X. Lang, S. Gopalan, W. Fu, S. Ramakrishna, Bull. Chem. Soc. Jpn. (2022). https://doi.org/10.1246/bcsj.20200175

    Article  Google Scholar 

  5. K. Ariga, Nanoscale Horiz. (2021). https://doi.org/10.1039/D0NH00680G

    Article  PubMed  Google Scholar 

  6. Y. Ding, Y. Wan, Y.L. Min, W. Zhang, S.H. Yu, Inorg. Chem. (2008). https://doi.org/10.1021/ic8007975

    Article  PubMed  Google Scholar 

  7. X. Yu, T.J. Marks, A. Facchetti, Nature Mater. (2016). https://doi.org/10.1038/nmat4599

    Article  Google Scholar 

  8. B. Saravanakumar, S.P. Ramachandran, G. Ravi, V. Ganesh, A. Sakunthala, R. Yuvakkumar, Appl. Phys. A. (2019). https://doi.org/10.1007/s00339-018-2309-7

    Article  Google Scholar 

  9. B.J. Reddy, P. Vickraman, A.S. Justin, Phys. Status Solidi A. (2019). https://doi.org/10.1002/pssa.201800595

    Article  Google Scholar 

  10. W. Ye, Y. Jiang, Q. Liu, D. Xu, E. Zhang, X.W. Cheng, Z. Wan, C. Liu, J. Alloys Compd. (2022). https://doi.org/10.1016/j.jallcom.2021.161898

    Article  Google Scholar 

  11. R.M. Abdelhameed, M. Abu-Elghait, M. El-Shahat, J. Photochem. Photobiol. A. (2022). https://doi.org/10.1016/j.jallcom.2021.161898

    Article  Google Scholar 

  12. E.A.C. Ferreira, N.F. Andrade Neto, A.A.G. Santiago, C.A. Paskocimas, M.R.D. Bomio, F.V. Motta, J. Mater. Sci. Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-02980-0

    Article  Google Scholar 

  13. Y.V.B. de Santana, J.E.C. Gomes, L. Matos, G.H. Cruvinel, A. Perrin, C. Perrin, J. Andrès, J.A. Varela, E. Longo, Nanomater. Nanotechnol. (2014). https://doi.org/10.5772/5893

    Article  Google Scholar 

  14. B.N.A. da Silva Pimentel, F.H. Marin-Dett, M. Assis, P.A. Barbugli, E. Longo, C.E. Vergani, Front. Bioeng. Biotechnol. (2022). https://doi.org/10.3389/fbioe.2022.826123

    Article  Google Scholar 

  15. G.S. Sousa, F.X. Nobre, M.V.B. do Nascimento, O.C. Mendes, L. Manzato, Y.L. Ruiz, W.R. Brito, P.R.C. Couceiro, J.M.E. de Matos, Inorg. Chem. (2022). https://doi.org/10.1021/acs.inorgchem.1c03245

    Article  Google Scholar 

  16. Y. Lian, Y. Wang, D. Zhang, L. Xu, Colloids Surf. A (2022). https://doi.org/10.1016/j.colsurfa.2022.128348

    Article  Google Scholar 

  17. L.H. da S Lacerda, E. Longo, J. Andrés, M.A. San-Miguel, J. Solid State Chem. (2022). https://doi.org/10.1016/j.jssc.2021.122670

    Article  Google Scholar 

  18. S.C. Abrahams, J.M. Reddy, J. Chem. Phys. (1965). https://doi.org/10.1063/1.1697153

    Article  Google Scholar 

  19. Y.P. Yadava, R.A. Singh, J. Mater. Sci. (1986). https://doi.org/10.1007/BF00551496

    Article  Google Scholar 

  20. G.W. Smith, J.A. Ibers, Acta Crystallogr. (1965). https://doi.org/10.1107/S0365110X65003201

    Article  Google Scholar 

  21. M. Théodet, C. Quilfen, C. Martínez, C. Aymonier, J. Supercrit. Fluids. (2016). https://doi.org/10.1016/j.supflu.2016.07.002

    Article  Google Scholar 

  22. L.S. Cavalcante, E. Moraes, M.A.P. Almeida, C.J. Dalmaschio, N.C. Batista, J.A. Varela, E. Longo, M. Siu Li, J. Andrés, A. Beltrán, Polyhedron (2013). https://doi.org/10.1016/j.poly.2013.02.006

    Article  Google Scholar 

  23. E.L.S. Souza, J.C. Sczancoski, I.C. Nogueira, M.A.P. Almeida, M.O. Orlandi, M.S. Li, R.A.S. Luz, M.G.R. Filho, E. Longo, L.S. Cavalcante, Ultrason. Sonochem. (2017). https://doi.org/10.1016/j.ultsonch.2017.03.007

    Article  PubMed  Google Scholar 

  24. R.W.G. Wyckoff, J. Am. Chem. Soc. (1922). https://doi.org/10.1021/ja01430a017

    Article  Google Scholar 

  25. F. Rocca, A. Kuzmin, P. Mustarelli, C. Tomasi, A. Magistris, Solid State Ionics (1999). https://doi.org/10.1016/S0167-2738(98)00546-3

    Article  Google Scholar 

  26. N. Senguttuvan, S.M. Babu, C. Subramanian, Mater. Eng. B Sci. (1997). https://doi.org/10.1016/S0921-5107(97)00039-1

    Article  Google Scholar 

  27. R.H.N. Frazão, D.G.D. Rocca, S.M. de Amorim, R.A. Peralta, C.D. Moura-Nickel, A. de Noni, R.F.P.M. Moreira, Environ. Technol. (2019). https://doi.org/10.1080/09593330.2019.1663939

    Article  PubMed  Google Scholar 

  28. Y. Chen, X. Xie, Y. Si, P. Wang, Q. Yan, Appl. Surf. Sci. (2019). https://doi.org/10.1016/j.apsusc.2019.143860

    Article  Google Scholar 

  29. F.H.P. Lopes, L.F.G. Noleto, V.E.M. Vieira, A.C.S. Jucá, K.R.B. da S, M.S. de Costa, P.B. de Oliveira, Y.L. de Sousa, G.O. de Oliveira, M. Gusmão, Química: Debate Entre a Vida Moderna e o Meio Ambiente (EditoraAtena, Chennai, 2021), pp.150–164. https://doi.org/10.22533/at.ed.783211204

    Book  Google Scholar 

  30. F.S. Cunha, F.H.P. Lopes, A.C.S. Jucá et al., Estudos Interdisciplinares Nas Ciências Exatas e Da Terra e Engenharias (Chennai, Editora Atena, 2019), pp.300–324. https://doi.org/10.22533/at.ed.423192309

    Book  Google Scholar 

  31. G.S. Sousa, F.X. Nobre, E.A. Araújo Júnior, J.R. Sambrano, A.R. Albuquerque, R.S. Bindá, P.R.C. Couceiro, W.R. Brito, L.S. Cavalcante, M.R.M.C. Santos, J.M.E. de Matos, Arabian J. Chem (2020). https://doi.org/10.1016/j.arabjc.2018.07.011

    Article  Google Scholar 

  32. J.V.B. Moura, T.S. Freitas, R.P. Cruz, R.L.S. Pereira, A.R.P. Silva, A.T.L. Santos, J.H. da Silva, C. Luz-Lima, P.T.C. Freire, H.D.M. Coutinho, Biomed. Pharmacother. (2017). https://doi.org/10.1016/j.biopha.2016.12.016

    Article  PubMed  Google Scholar 

  33. N.F. Andrade Neto, A.B. Lima, M.R.D. Bomio, F.V. Motta, J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.156077

    Article  Google Scholar 

  34. D.W.R. Coimbra, F.S. Cunha, J.C. Sczancoski, J.F.S. de Carvalho, F.R.C. de Macêdo, L.S. Cavalcante, J. Mater. Sci.: Mater. Electron. (2019). https://doi.org/10.1007/s10854-018-0401-6

    Article  Google Scholar 

  35. A. Beltrán, L. Gracia, E. Longo, J. Andrés, J. Phys. Chem. C. (2014). https://doi.org/10.1021/jp4118024

    Article  Google Scholar 

  36. V. Teodoro, A.F. Gouveia, T.R. Machado, A.B. Trench, N. Jacomaci, M. Assis, G.E. Marques, M.D. Teodoro, M.A. San-Miguel, J. Andrés, J. Bettini, E. Longo. Ceram. Int. 48, 3 (2022). https://doi.org/10.1016/j.ceramint.2021.10.156

    Article  CAS  Google Scholar 

  37. C.H.B. Ng, W.Y. Fan, Cryst. Growth Des. (2015). https://doi.org/10.1021/acs.cgd.5b00455

    Article  Google Scholar 

  38. C.A. Oliveira, D.P. Volanti, A.E. Nogueira, C.A. Zamperini, C.E. Vergani, E. Longo, Mater. Des. (2017). https://doi.org/10.1016/j.matdes.2016.11.032

    Article  Google Scholar 

  39. M.T. Fabbro, C.C. Foggi, L.P.S. Santos, L. Gracia, A. Perrin, C. Perrin, C.E. Vergani, A.L. Machado, J. Andrés, E. Cordoncillo, E. Longo, Dalton Trans. (2016). https://doi.org/10.1039/C6DT00343E

    Article  PubMed  Google Scholar 

  40. E.A.C. Ferreira, N.F. Andrade Neto, M.R.D. Bomio, F.V. Motta, Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.03.012

    Article  Google Scholar 

  41. F.C. Fraga, D.G.D. Rocca, H.J. Joséa, H.F.V. Victória, J.B.G. Filho, K. Krambrock, E. Rodríguez-Castellón, R.F.P.M. Moreira, J. Photochem. Photobiol. A. (2022). https://doi.org/10.1016/j.jphotochem.2022.114102

    Article  Google Scholar 

  42. Y.L. Oliveira, M.J.S. Costa, A.C.S. Jucá, L.K.R. Silva, E. Longo, N.S. Arul, L.S. Cavalcante, J. Mol. Struct. (2020). https://doi.org/10.1016/j.molstruc.2020.128774

    Article  PubMed  PubMed Central  Google Scholar 

  43. Y.L. Oliveira, A.F. Gouveia, M.J.S. Costa, F.H.P. Lopes, J.C. Sczancoski, E. Longo, G.E. Luz, R.S. Santos, L.S. Cavalcante, Mater. Sci. Energy Technol. (2022). https://doi.org/10.1016/j.mset.2021.12.006

    Article  Google Scholar 

  44. H.M. Rietveld, J. Appl. Crystallogr. (1969). https://doi.org/10.1107/S0021889869006558

    Article  Google Scholar 

  45. M. Bortolotti, L. Lutterotti, I. Lonardelli, J. Appl. Cryst. (2009). https://doi.org/10.1107/S0021889809008309

    Article  Google Scholar 

  46. K. Momma, F. Izumi, J. Appl. Cryst. (2008). https://doi.org/10.1107/S0021889808012016

    Article  Google Scholar 

  47. K. McLAREN, J. Soc. Dyers Colour. (1976). https://doi.org/10.1111/j.1478-4408.1976.tb03301.x

    Article  Google Scholar 

  48. R. McDonald, K.J. Smith, J. Soc. Dyers Colour. (1995). https://doi.org/10.1111/j.1478-4408.1995.tb01688.x

    Article  Google Scholar 

  49. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. (1996). https://doi.org/10.1103/physrevlett.77.3865

    Article  PubMed  Google Scholar 

  50. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B. (1992). https://doi.org/10.1103/PhysRevB.46.6671

    Article  Google Scholar 

  51. G. Kresse, J. Furthmüller, Phys. Rev. B - Condens. Matter Mater. Phys. (1996). https://doi.org/10.1103/PhysRevB.54.11169

    Article  Google Scholar 

  52. G. Kresse, J. Hafner, Phys. Rev. B 49, 14251 (1994). https://doi.org/10.1103/PhysRevB.49.14251

    Article  CAS  Google Scholar 

  53. P.F. Pereira, C.C. De Foggi, A.F. Gouveia, I.M. Pinatti, L.A. Cabral, E. Guillamon, I. Sorribes, M.A. San-Miguel, C.E. Vergani, A.Z. Simões, E.Z. da Silva, L.S. Cavalcante, R. Llusar, E. Longo. J. Andrés. Int. J. Mol. Sci 23, 10589 (2022). https://doi.org/10.3390/ijms231810589

  54. J. Andrés, L. Gracia, A.F. Gouveia, M.M. Ferrer, E. Longo, Nanotechnology (2015). https://doi.org/10.1088/0957-4484/26/40/405703

    Article  PubMed  Google Scholar 

  55. G.D. Barmparis, Z. Lodziana, N. Lopez, I.N. Remediakis, Beilstein J. Nanotechnol. (2015). https://doi.org/10.3762/bjnano.6.35

    Article  PubMed  PubMed Central  Google Scholar 

  56. G.Z. Wulff, Krystallog. (1901). https://doi.org/10.1524/zkri.1901.34.1.449

    Article  Google Scholar 

  57. N.G. Macedo, A.F. Gouveia, R.A. Roca, M. Assis, L. Gracia, J. Andrés, E.R. Leite, E. Longo, J. Phys. Chem. C. (2018). https://doi.org/10.1021/acs.jpcc.8b01898

    Article  Google Scholar 

  58. N. Pachauri, G.B.V.S. Lakshmi, S. Sri, P.K. Gupta, P.R. Solanki, Mater. Sci. Eng. C. (2020). https://doi.org/10.1016/j.msec.2020.110911

    Article  Google Scholar 

  59. F.S. Cunha, J.C. Sczancoski, I.C. Nogueira, V.G. de Oliveira, S.M.C. Lustosa, E. Longo, L.S. Cavalcante, CrystEngComm (2015). https://doi.org/10.1039/C5CE01662B

    Article  Google Scholar 

  60. B.H. Toby, Powder Diffr. (2006). https://doi.org/10.1154/1.2179804

    Article  Google Scholar 

  61. A. Zareie-Darmian, H. Farsi, A. Farrokhi, R. Sarhaddi, Z. Li, Phys. Chem. Chem. Phys. (2021). https://doi.org/10.1039/D0CP05673A

    Article  PubMed  Google Scholar 

  62. G.S. Sousa, F.X. Nobre, E.A.A. Júnior, R.D.S. Bezerra, M.L. de Sá, J.M.E. de Matos, M.R.M.C. Santos, Environ. Nanotechnol. Monit Manage. (2020). https://doi.org/10.1016/j.enmm.2020.100379

    Article  Google Scholar 

  63. K. Momma, F. Izumi, J. Appl. Cryst. (2011). https://doi.org/10.1107/S0021889811038970

    Article  Google Scholar 

  64. A.F. Gouveia, J.C. Sczancoski, M.M. Ferrer, A.S. Lima, M.R.M.C. Santos, M.S. Li, R.S. Santos, E. Longo, L.S. Cavalcante, Inorg. Chem. (2014). https://doi.org/10.1021/ic500335x

    Article  PubMed  Google Scholar 

  65. J.V.B. Moura, J.G. da Silva Filho, P.T.C. Freire, C. Luz-Lima, G.S. Pinheiro, B.C. Viana, J. Mendes Filho, A.G. Souza-Filho, G.D. Saraiva, Vib. Spectrosc. (2016). https://doi.org/10.1016/j.vibspec.2016.06.009

    Article  Google Scholar 

  66. P.B. Almeida, I.M. Pinatti, R.C. de Oliveira, M.M. Teixeira, C.C. Santos, T.R. Machado, E. Longo, I.L.V. Rosa, Chem. Pap. (2021). https://doi.org/10.1007/s11696-020-01489-4

    Article  Google Scholar 

  67. M.T. Fabbro, C. Saliby, L.R. Rios, F.A. La Porta, L. Gracia, M.S. Li, J. Andrés, L.P.S. Santos, E. Longo, Sci. Adv. Mater. Technol. (2015). https://doi.org/10.1088/1468-6996/16/6/065002

    Article  Google Scholar 

  68. J. Li, F. Liu, Y. Li, New J. Chem. (2018). https://doi.org/10.1039/C8NJ02327A

    Article  Google Scholar 

  69. Y. Song, W. Xie, C. Yang, D. Wei, X. Su, L. Li, L. Wang, J. Wang, J. Mater. Res. Technol. (2020). https://doi.org/10.1016/j.jmrt.2020.03.102

    Article  Google Scholar 

  70. L.S. Cavalcante, J.C. Sczancoski, N.C. Batista, E. Longo, J.A. Varela, M.O. Orlandi, Adva. Powder Technol. (2013). https://doi.org/10.1016/j.apt.2012.08.007

    Article  Google Scholar 

  71. J. Andrés, M.M. Ferrer, L. Gracia, A. Beltran, V.M. Longo, G.H. Cruvinel, R.L. Tranquilin, E. Longo, Part. Part. Syst. Charact. (2019). https://doi.org/10.1002/ppsc.201400162

    Article  Google Scholar 

  72. KrystalShaper (2018) http://www.jcrystal.com/products/krystalshaper/

  73. P. Kubelka, F. Munk, Z. Tech, Phys. 12, 593 (1931)

    Google Scholar 

  74. A.B. Murphy, J. Phys. D: Appl. Phys. (2006). https://doi.org/10.1088/0022-3727/39/16/008

    Article  Google Scholar 

  75. L. Yang, B. Kruse, J. Opt. Soc. Am. A (2004). https://doi.org/10.1364/JOSAA.21.001933

    Article  Google Scholar 

  76. R. Lacomba-Perales, J. Ruiz-Fuertes, D. Errandonea, D. Martínez-García, A. Segura, EPL (2008). https://doi.org/10.1209/0295-5075/83/37002

    Article  Google Scholar 

  77. H. Jiang, J.-K. Liu, J.-D. Wang, Y. Lu, X.-H. Yang, CrystEngComm (2015). https://doi.org/10.1039/C5CE00039D

    Article  Google Scholar 

  78. S. Balasurya, A. Syed, L.L. Raju, S. Al-Rashed, A.M. Thomas, A. Das, S.S. Khan, Opt. Mater. (2021). https://doi.org/10.1016/j.optmat.2021.110856

    Article  Google Scholar 

  79. G. Matafonova, V. Batoev, Water Res. (2018). https://doi.org/10.1016/j.watres.2017.12.079

    Article  PubMed  Google Scholar 

  80. X. Li, Y. Wang, Z. Pan, Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.07.155

    Article  Google Scholar 

  81. J.C. Ragain, J. Dent. Oral Disord. Ther. (2016). https://doi.org/10.15226/jdodt.2016.00148

    Article  Google Scholar 

  82. X. Zhao, Y. Zhang, Y. Huang, H. Gong, J. Zhao, Dyes Pigm. (2015). https://doi.org/10.1016/j.dyepig.2015.01.018

    Article  Google Scholar 

  83. M.A. Patel, B.A. Bhanvase, S.H. Sonawane, Ultrason. Sonochem. (2013). https://doi.org/10.1016/j.ultsonch.2012.11.008

    Article  PubMed  Google Scholar 

  84. H.S. Cha, B. Yu, Y.K. Lee, J. Adv. Prosthodont. (2013). https://doi.org/10.4047/jap.2013.5.3.262

    Article  PubMed  PubMed Central  Google Scholar 

  85. F.H. Alhamedi, M.A. Rauf, Desalin. (2009). https://doi.org/10.1016/j.desal.2008.03.016

    Article  Google Scholar 

  86. Z.L. Ye, C.Q. Cao, J.C. He, R.X. Zhang, H.Q. Hou, Chinese Chem. Lett. (2009). https://doi.org/10.1016/j.cclet.2008.12.033

    Article  Google Scholar 

  87. M.A. Saidani, A. Fkiri, L.-S. Smiri, J. Inorg. Organomet. Polym. (2019). https://doi.org/10.1007/s10904-019-01075-6

    Article  Google Scholar 

  88. F. Wu, F. Chang, J. Zheng, M. Jiao, B. Deng, X. Hu, X. Liu, J. Inorg. Organomet. Polym. (2018). https://doi.org/10.1007/s10904-017-0731-5

    Article  Google Scholar 

  89. A. Bilgic, J. Alloys Compd. (2022). https://doi.org/10.1016/j.jallcom.2021.163360

    Article  Google Scholar 

  90. M. Yan, Y. Wu, F. Zhu, Y. Hua, W. Shi, Phys. Chem. Chem. Phys. (2016). https://doi.org/10.1039/C5CP05599G

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank CAPES, CNP, and FAPEPI for their financial support, UFG-CRTI for the FE-SEM analyses, UFPI-LIMAV, UFPI-FISMAT, GERATEC-UESPI, to CETEM and PET-Chemistry UESPI for technical support. A.F.G. acknowledges the Generalitat Valenciana (Conselleria de Innovación, Universidades, Ciencia y Sociedad Digital) for the postdoctoral contract (CIAPOS/2021/106).

Funding

The authors do have not any funding to pay for open access.

Author information

Authors and Affiliations

Authors

Contributions

This manuscript was written through the contributions of all authors that agreed with this submission. FHPL, LFGN, PBdeS, VEMV, KRBSC, and ACSJ prepared the samples and performed the UV–Vis measurements and photocatalytic assays. FHPL and LSC performed the Rietveld refinement and structural analysis. KRBSC performed the Raman, and FT-IR measurements. YLO performed colorimetric measurements. MAPA, AFG, and LSC conceived the project. All authors participated in writing the manuscript and discussing all the results.

Corresponding author

Correspondence to L. S. Cavalcante.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes, F.H.P., Noleto, L.F.G., Vieira, V.E.M. et al. Experimental and Theoretical Correlation of Modulated Architectures of β-Ag2MoO4 Microcrystals: Effect of Different Synthesis Routes on the Morphology, Optical, Colorimetric, and Photocatalytic Properties. J Inorg Organomet Polym 33, 424–450 (2023). https://doi.org/10.1007/s10904-022-02509-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02509-4

Keywords

Navigation