Skip to main content

Advertisement

Log in

Applications of Spectroscopic Techniques for Characterization of Polymer Nanocomposite: A Review

  • Topical Reviews
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Through past eras, spectroscopic techniques found numerous applications i.e., from biological applications to measurement of chemical composition and characterization of numerous materials such as polymers, nanocomposites etc. Nanocomposites, in addition to radiation shielding materials are developing and growing materials having numerous uses. For study of distinctive characteristics, characterization, and development of new materials employing polymer nanocomposites, numerous characterization practices are accessible and are in use nowadays. The prime objective of current review is to summarize the knowledge of existing characterization practices and to explore the applications of fluorescence, UV–Vis spectroscopy, solid-state nuclear magnetic resonance (NMR), wide angle X-ray diffraction (WXRD), small angel X-ray scattering (SAXS), and infrared in addition to Raman technique towards characterization of metal oxide composites, polymers, fillers, composites besides nanocomposites. Fluorescence techniques find limitations in providing comprehensive examination of materials. For information regarding material size, aggregation phase, as well as refractive index, UV–Vis spectroscopy was employed. Solid-state NMR spectroscopy give information about silanol hydroxyl groups present at exterior of silica as well as their interactions with polymer and polymer-filler interfacial connections. WXRD provide information on crystal structure, composition, crystalline grain size of materials while SAXS provide information about size of particle, and its distribution. To characterize different types of functional groups in materials, infrared spectroscopy was employed. Raman spectroscopy finds wide-ranging applications for analysis of materials. The novelty of this review is that until yet, very few review papers have been published that concisely describe all above mentioned techniques along with their applications in a very simple and effective means.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. J. Jancar, J. Douglas, F.W. Starr, S. Kumar, P. Cassagnau, A. Lesser et al., Current issues in research on structure–property relationships in polymer nanocomposites. Polymer 51(15), 3321–3343 (2010). https://doi.org/10.1016/j.polymer.2010.04.074

    Article  CAS  Google Scholar 

  2. L. Bokobza, Mechanical and electrical properties of elastomer nanocomposites based on different carbon nanomaterials. J. Carbon Res. 3(2), 10 (2017). https://doi.org/10.3390/c3020010

    Article  CAS  Google Scholar 

  3. L. Bokobza, The reinforcement of elastomeric networks by fillers. Macromol. Mater. Eng. 289(7), 607–621 (2004). https://doi.org/10.1002/mame.200400034

    Article  CAS  Google Scholar 

  4. S.-B. Wang, J. Mark, In-situ precipitation of reinforcing titania fillers. Polym Bull. 17(3), 271–277 (1987). https://doi.org/10.1007/BF00285360

    Article  CAS  Google Scholar 

  5. D. McCarthy, J. Mark, D. Schaefer, Synthesis, structure, and properties of hybrid organic–inorganic composites based on polysiloxanes I: Poly (dimethylsiloxane) elastomers containing silica. J. Polym. Sci. Part B 36(7), 1167–1189 (1998). https://doi.org/10.1002/(SICI)1099-0488(199805)36:7%3C1167::AID-POLB7%3E3.0.CO;2-R

    Article  CAS  Google Scholar 

  6. Q.W. Yuan, J.E. Mark, Reinforcement of poly (dimethylsiloxane) networks by blended and in-situgenerated silica fillers having various sizes, size distributions, and modified surfaces. Macromol. Chem. Phys. 200(1), 206–220 (1999). https://doi.org/10.1002/(SICI)1521-3935(19990101)200:1%3C206::AID-MACP206%3E3.0.CO;2-S

    Article  CAS  Google Scholar 

  7. P. Hajji, L. David, J. Gerard, J. Pascault, G. Vigier, Synthesis, structure, and morphology of polymer–silica hybrid nanocomposites based on hydroxyethyl methacrylate. J Polym. Sci. Part B 37(22), 3172–3187 (1999). https://doi.org/10.1002/(SICI)1099-0488(19991115)37:22%3C3172::AID-POLB2%3E3.0.CO;2-R

    Article  CAS  Google Scholar 

  8. L. Matĕjka, O. Dukh, Kolařı́k J, Reinforcement of crosslinked rubbery epoxies by in-situ formed silica. Polymer 41(4), 1449–1459 (2000). https://doi.org/10.1016/S0032-3861(99)00317-1

    Article  Google Scholar 

  9. Matějka L, Dukh O. Organic‐inorganic hybrid networks. Macromolecular Symposia: Wiley Online Library; 2001. pp. 181–8.

  10. L. Dewimille, B. Bresson, L. Bokobza, Synthesis, structure and morphology of poly (dimethylsiloxane) networks filled with in situ generated silica particles. Polymer 46(12), 4135–4143 (2005). https://doi.org/10.1016/j.polymer.2005.02.049

    Article  CAS  Google Scholar 

  11. L. Bokobza, A. Diop, Reinforcement of poly (dimethylsiloxane) by sol-gel in situ generated silica and titania particles. Express Polym. Lett. 4(6), 355–363 (2010). https://doi.org/10.3144/expresspolymlett.2010.45

    Article  CAS  Google Scholar 

  12. J. Wen, J.E. Mark, Precipitation of silica-titania mixed-oxide fillers into poly (dimethylsiloxane) networks. Rubber Chem. Technol. 67(5), 806–819 (1994). https://doi.org/10.5254/1.3538712

    Article  CAS  Google Scholar 

  13. J. Breiner, J. Mark, Preparation, structure, growth mechanisms and properties of siloxane composites containing silica, titania or mixed silica–titania phases. Polymer 39(22), 5483–5493 (1998). https://doi.org/10.1016/S0032-3861%2897%2910276-2

    Article  CAS  Google Scholar 

  14. E.P. Giannelis, Polymer layered silicate nanocomposites. Adv. Mater. 8(1), 29–35 (1996). https://doi.org/10.1002/adma.19960080104

    Article  CAS  Google Scholar 

  15. R. Krishnamoorti, R.A. Vaia, E.P. Giannelis, Structure and dynamics of polymer-layered silicate nanocomposites. Chem. Mater. 8(8), 1728–1734 (1996). https://doi.org/10.1021/cm960127g

    Article  CAS  Google Scholar 

  16. M. Alexandre, P. Dubois, Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng. Rep. 28(1–2), 1–63 (2000). https://doi.org/10.1016/S0927-796X(00)00012-7

    Article  Google Scholar 

  17. A. Okada, A. Usuki, Twenty years of polymer-clay nanocomposites. Macromol. Mater. Eng. 291(12), 1449–1476 (2006). https://doi.org/10.1002/mame.200600260

    Article  CAS  Google Scholar 

  18. L. Bokobza, Spectroscopic techniques for the characterization of polymer nanocomposites: a review. Polymers 10(1), 7 (2018). https://doi.org/10.3390/polym10010007

    Article  CAS  Google Scholar 

  19. L. Bokobza, M. Rahmani, C. Belin, J.L. Bruneel, N.E. El Bounia, Blends of carbon blacks and multiwall carbon nanotubes as reinforcing fillers for hydrocarbon rubbers. J. Polym. Sci. Part B 46(18), 1939–1951 (2008). https://doi.org/10.1002/polb.21529

    Article  CAS  Google Scholar 

  20. M. Galimberti, M. Coombs, V. Cipolletti, P. Riccio, T. Riccò, S. Pandini et al., Enhancement of mechanical reinforcement due to hybrid filler networking promoted by an organoclay in hydrocarbon-based nanocomposites. Appl. Clay Sci. 65, 57–66 (2012). https://doi.org/10.1016/j.clay.2012.04.019

    Article  CAS  Google Scholar 

  21. P.-C. Ma, N.A. Siddiqui, G. Marom, J.-K. Kim, Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos. Part A 41(10), 1345–1367 (2010). https://doi.org/10.1016/j.compositesa.2010.07.003

    Article  CAS  Google Scholar 

  22. V.D. Punetha, S. Rana, H.J. Yoo, A. Chaurasia, J.T. McLeskey Jr., M.S. Ramasamy et al., Functionalization of carbon nanomaterials for advanced polymer nanocomposites: a comparison study between CNT and graphene. Prog. Polym. Sci. 67, 1–47 (2017). https://doi.org/10.1016/j.progpolymsci.2016.12.010

    Article  CAS  Google Scholar 

  23. X. Zhang, L. Hou, P. Samorì, Coupling carbon nanomaterials with photochromic molecules for the generation of optically responsive materials. Nat. Commun. 7(1), 1–14 (2016). https://doi.org/10.1038/ncomms11118

    Article  CAS  Google Scholar 

  24. V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, S. Seal, Graphene based materials: past, present and future. Prog. Mater Sci. 56(8), 1178–1271 (2011). https://doi.org/10.1016/j.pmatsci.2011.03.003

    Article  CAS  Google Scholar 

  25. L. Xu, L. Cheng, Graphite oxide under high pressure: a Raman spectroscopic study. J. Nanomater. (2013). https://doi.org/10.1155/2013/731875

    Article  Google Scholar 

  26. H.J. Kim, S.-M. Lee, Y.-S. Oh, Y.-H. Yang, Y.S. Lim, D.H. Yoon et al., Unoxidized graphene/alumina nanocomposite: fracture-and wear-resistance effects of graphene on alumina matrix. Sci. Rep. 4(1), 1–10 (2014). https://doi.org/10.1038/srep05176

    Article  CAS  Google Scholar 

  27. L. Bokobza, J.-L. Bruneel, M. Couzi, Raman spectra of carbon-based materials (from graphite to carbon black) and of some silicone composites. J. Carbon Res. 1(1), 77–94 (2015). https://doi.org/10.3390/c1010077

    Article  Google Scholar 

  28. L.M. Viculis, J.J. Mack, O.M. Mayer, H.T. Hahn, R.B. Kaner, Intercalation and exfoliation routes to graphite nanoplatelets. J. Mater. Chem. 15(9), 974–978 (2005). https://doi.org/10.1039/B413029D

    Article  CAS  Google Scholar 

  29. Y. Geng, S.J. Wang, J.-K. Kim, Preparation of graphite nanoplatelets and graphene sheets. J. Colloid Interface Sci. 336(2), 592–598 (2009). https://doi.org/10.1016/j.jcis.2009.04.005

    Article  CAS  PubMed  Google Scholar 

  30. T. Kuilla, S. Bhadra, D. Yao, N.H. Kim, S. Bose, J.H. Lee, Recent advances in graphene based polymer composites. Prog Polym Sci. 35(11), 1350–1375 (2010). https://doi.org/10.1016/j.progpolymsci.2010.07.005

    Article  CAS  Google Scholar 

  31. B. Li, W.-H. Zhong, Review on polymer/graphite nanoplatelet nanocomposites. JMatS. 46(17), 5595–5614 (2011). https://doi.org/10.1007/s10853-011-5572-y

    Article  CAS  Google Scholar 

  32. R. Sengupta, M. Bhattacharya, S. Bandyopadhyay, A.K. Bhowmick, A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym. Sci. 36(5), 638–670 (2011). https://doi.org/10.1016/j.progpolymsci.2010.11.003

    Article  CAS  Google Scholar 

  33. M. Cai, D. Thorpe, D.H. Adamson, H.C. Schniepp, Methods of graphite exfoliation. J. Mater. Chem. 22(48), 24992–25002 (2012). https://doi.org/10.1039/C2JM34517J

    Article  CAS  Google Scholar 

  34. D.G. Papageorgiou, I.A. Kinloch, R.J. Young, Graphene/elastomer nanocomposites. Carbon 95, 460–484 (2015). https://doi.org/10.1016/j.carbon.2015.08.055

    Article  CAS  Google Scholar 

  35. A.M. Dimiev, G. Ceriotti, A. Metzger, N.D. Kim, J.M. Tour, Chemical mass production of graphene nanoplatelets in∼ 100% yield. ACS Nano 10(1), 274–279 (2016). https://doi.org/10.1021/acsnano.5b06840

    Article  CAS  PubMed  Google Scholar 

  36. M. Al-Buriahi, C. Sriwunkum, H. Arslan, B.T. Tonguc, M.A. Bourham, Investigation of barium borate glasses for radiation shielding applications. Appl. Phys. A 126(1), 1–9 (2020). https://doi.org/10.1007/s00339-019-3254-9

    Article  CAS  Google Scholar 

  37. A. Saeed, F. Abolaban, Risk estimation of the low-dose fast neutrons on the molecular structure of the lipids of peripheral blood mononuclear cells. Biochem. Biophys. Res. Commun. 533(4), 1048–1053 (2020). https://doi.org/10.1016/j.bbrc.2020.09.116

    Article  CAS  PubMed  Google Scholar 

  38. A. Saeed, G.A. Raouf, S.S. Nafee, S.A. Shaheen, Y. Al-Hadeethi, Effects of very low dose fast neutrons on cell membrane and secondary protein structure in rat erythrocytes. PLoS ONE 10(10), e0139854 (2015). https://doi.org/10.1371/journal.pone.0139854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. A.A. El-Soad, M. Sayyed, K. Mahmoud, E. Şakar, E. Kovaleva, Simulation studies for gamma ray shielding properties of Halloysite nanotubes using MCNP-5 code. Appl. Radiat. Isot. 154, 108882 (2019). https://doi.org/10.1016/j.apradiso.2019.108882

    Article  CAS  PubMed  Google Scholar 

  40. Y. Rammah, K. Mahmoud, M. Sayyed, F. El-Agawany, R. El-Mallawany, Novel vanadyl lead-phosphate glasses: P2O5–PbO–ZnONa2O–V2O5: synthesis, optical, physical and gamma photon attenuation properties. J. Non-Cryst. Solids 534, 119944 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.119944

    Article  CAS  Google Scholar 

  41. A. Stewart, G.W. Kneale, Radiation dose effects in relation to obstetric x-rays and childhood cancers. Lancet 295(7658), 1185–1188 (1970). https://doi.org/10.1016/S0140-6736(70)91782-4

    Article  Google Scholar 

  42. K. Mahmoud, M. Sayyed, O. Tashlykov, Gamma ray shielding characteristics and exposure buildup factor for some natural rocks using MCNP-5 code. Nucl. Eng. Technol. 51(7), 1835–1841 (2019). https://doi.org/10.1016/j.net.2019.05.013

    Article  CAS  Google Scholar 

  43. V. Singh, S. Shirmardi, M. Medhat, N. Badiger, Determination of mass attenuation coefficient for some polymers using Monte Carlo simulation. Vacuu. 119, 284–288 (2015). https://doi.org/10.1016/j.vacuum.2015.06.006

    Article  CAS  Google Scholar 

  44. S.H. Hosseini, S. Noushin Ezzati, M. Askari, Synthesis, characterization and X-ray shielding properties of polypyrrole/lead nanocomposites. Polym. Adv. Technol. 26(6), 561–568 (2015). https://doi.org/10.1002/pat.3486

    Article  CAS  Google Scholar 

  45. Y. Elmahroug, B. Tellili, C. Souga, Determination of shielding parameters for different types of resins. Ann. Nucl. Energy. 63, 619–623 (2014). https://doi.org/10.1016/j.anucene.2013.09.007

    Article  CAS  Google Scholar 

  46. C.V. More, Z. Alsayed, M. Badawi, A. Thabet, P.P. Pawar, Polymeric composite materials for radiation shielding: a review. Environ Chem Lett. 19(3), 2057–2090 (2021). https://doi.org/10.1007/s10311-021-01189-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. G. Susoy, E.A. Guclu, O. Kilicoglu, M. Kamislioglu, M. Al-Buriahi, M. Abuzaid et al., The impact of Cr2O3 additive on nuclear radiation shielding properties of LiF–SrO–B2O3 glass system. Mater. Chem. Phys. 242, 122481 (2020). https://doi.org/10.1016/j.matchemphys.2019.122481

    Article  CAS  Google Scholar 

  48. M. Al-Buriahi, E.M. Bakhsh, B. Tonguc, S.B. Khan, Mechanical and radiation shielding properties of tellurite glasses doped with ZnO and NiO. Ceram Int. 46(11), 19078–19083 (2020). https://doi.org/10.1016/j.ceramint.2020.04.240

    Article  CAS  Google Scholar 

  49. H. Tekin, L. Kassab, S.A. Issa, M. Martins, L. Bontempo, G.R. da Silva Mattos, Newly developed BGO glasses: synthesis, optical and nuclear radiation shielding properties. Ceram Int. 46(8), 11861–11873 (2020). https://doi.org/10.1016/j.ceramint.2020.01.221

    Article  CAS  Google Scholar 

  50. M.S. Al-Buriahi, C. Eke, S. Alomairy, A. Yildirim, H. Alsaeedy, C. Sriwunkum, Radiation attenuation properties of some commercial polymers for advanced shielding applications at low energies. Polym. Adv. Technol. 32(6), 2386–2396 (2021). https://doi.org/10.1002/pat.5267

    Article  CAS  Google Scholar 

  51. M. Al-Buriahi, V. Singh, Comparison of shielding properties of various marble concretes using GEANT4 simulation and experimental data. J. Aust. Ceram. Soc. 56(3), 1127–1133 (2020). https://doi.org/10.1007/s41779-020-00457-1

    Article  CAS  Google Scholar 

  52. I. Olarinoye, S. Alomairy, C. Sriwunkum, M.S. Al-Buriahi, Effect of Ag2O/V2O5 substitution on the radiation shielding ability of tellurite glass system via XCOM approach and FLUKA simulations. Phys. Scr. 96(6), 065308 (2021). https://doi.org/10.1088/1402-4896/abf26a

    Article  Google Scholar 

  53. M. Kaçal, F. Akman, M. Sayyed, Evaluation of gamma-ray and neutron attenuation properties of some polymers. Nucl. Eng. Technol. 51(3), 818–824 (2019). https://doi.org/10.1016/j.net.2018.11.011

    Article  CAS  Google Scholar 

  54. O. Kilicoglu, H. Tekin, Bioactive glasses and direct effect of increased K2O additive for nuclear shielding performance: a comparative investigation. Ceram Int. 46(2), 1323–1333 (2020). https://doi.org/10.1016/j.ceramint.2019.09.095

    Article  CAS  Google Scholar 

  55. M. Al-Buriahi, Y. Alajerami, A. Abouhaswa, A. Alalawi, T. Nutaro, B. Tonguc, Effect of chromium oxide on the physical, optical, and radiation shielding properties of lead sodium borate glasses. J. Non-Cryst. Solids 544, 120171 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120171

    Article  CAS  Google Scholar 

  56. M. Al-Buriahi, H. Hegazy, F. Alresheedi, H. Somaily, C. Sriwunkum, I. Olarinoye, Effect of Sb2O3 addition on radiation attenuation properties of tellurite glasses containing V2O5 and Nb2O5. Appl Phys A. 127(2), 1–12 (2021). https://doi.org/10.1007/s00339-020-04265-z

    Article  CAS  Google Scholar 

  57. H. Hegazy, M. Al-Buriahi, F. Alresheedi, S. Alraddadi, H. Arslan, H. Algarni, The effects of TeO2 on polarizability, optical transmission, and photon/neutron attenuation properties of boro-zinc-tellurite glasses. J. Inorg. Organomet. Polym Mater. 31(6), 2331–2338 (2021). https://doi.org/10.1007/s10904-021-01933-2

    Article  CAS  Google Scholar 

  58. M.S. Al-Buriahi, H. Somaily, A. Alalawi, S. Alraddadi, Polarizability, optical basicity, and photon attenuation properties of Ag2O–MoO3–V2O5–TeO2 glasses: the role of silver oxide. J. Inorg. Organomet. Polym Mater. 31(3), 1047–1056 (2021). https://doi.org/10.1007/s10904-020-01750-z

    Article  CAS  Google Scholar 

  59. J.S. Alzahrani, M.A. Alothman, C. Eke, H. Al-Ghamdi, D.A. Aloraini, M. Al-Buriahi, Simulating the radiation shielding properties of TeO2–Na2O–TiO glass system using PHITS Monte Carlo code. Comput. Mater. Sci. 196, 110566 (2021). https://doi.org/10.1016/j.commatsci.2021.110566

    Article  CAS  Google Scholar 

  60. S. Xu, M. Bourham, A. Rabiei, A novel ultra-light structure for radiation shielding. Mater. Des. 31(4), 2140–2146 (2010). https://doi.org/10.1016/j.matdes.2009.11.011

    Article  CAS  Google Scholar 

  61. B. Alshahrani, I. Olarinoye, C. Mutuwong, C. Sriwunkum, H. Yakout, H. Tekin et al., Amorphous alloys with high Fe content for radiation shielding applications. Radiat. Phys. Chem. 183, 109386 (2021). https://doi.org/10.1016/j.radphyschem.2021.109386

    Article  CAS  Google Scholar 

  62. A. Saeed, S. Alomairy, C. Sriwunkum, M. Al-Buriahi, Neutron and charged particle attenuation properties of volcanic rocks. Radiat. Phys. Chem. 184, 109454 (2021). https://doi.org/10.1016/j.radphyschem.2021.109454

    Article  CAS  Google Scholar 

  63. Y. Feng, X. Sun, L. Sun, W. Cai, J. Li, B. Hou, Electronic structure and X-photon absorption ability of BaPbO3. Chin. J. Inorg. Chem. 18(4), 342–346 (2002)

    CAS  Google Scholar 

  64. L. Liu, L. He, C. Yang, W. Zhang, R.G. Jin, L.Q. Zhang, In situ reaction and radiation protection properties of Gd (AA) 3/NR composites. Macromol. Rapid Commun. 25(12), 1197–1202 (2004). https://doi.org/10.1002/marc.200400077

    Article  CAS  Google Scholar 

  65. I. Boukhris, I. Kebaili, M. Al-Buriahi, A. Alalawi, A. Abouhaswa, B. Tonguc, Photon and electron attenuation parameters of phosphate and borate bioactive glasses by using Geant4 simulations. Ceram Int. 46(15), 24435–24442 (2020). https://doi.org/10.1016/j.ceramint.2020.06.226

    Article  CAS  Google Scholar 

  66. M. Al-Buriahi, S. Alomairy, C. Mutuwong, Effects of MgO addition on the radiation attenuation properties of 45S5 bioglass system at the energies of medical interest: an in silico study. J. Aust. Ceram. Soc. 57(4), 1107–1115 (2021). https://doi.org/10.1007/s41779-021-00605-1

    Article  CAS  Google Scholar 

  67. S. Nouh, B. Alsobhi, A.A. Elfadl, A. Massoud, Effect of gamma irradiation on the structure, optical and thermal properties of PC–PBT/NiO polymer nanocomposites films. J. Inorg. Organomet. Polym Mater. 27(6), 1851–1860 (2017). https://doi.org/10.1007/s10904-017-0650-5

    Article  CAS  Google Scholar 

  68. L. Schadler, L. Brinson, W. Sawyer, Polymer nanocomposites: a small part of the story. JOM. 59(3), 53–60 (2007). https://doi.org/10.1007/s11837-007-0040-5

    Article  CAS  Google Scholar 

  69. N.-M. Park, T.-S. Kim, S.-J. Park, Band gap engineering of amorphous silicon quantum dots for light-emitting diodes. Appl. Phys. Lett. 78(17), 2575–2577 (2001). https://doi.org/10.1063/1.1367277

    Article  CAS  Google Scholar 

  70. A. Bueche, Filler reinforcement of silicone rubber. J. Polym. Sci. 25(109), 139–149 (1957). https://doi.org/10.1002/pol.1957.1202510902

    Article  CAS  Google Scholar 

  71. E. Barna, B. Bommer, J. Kürsteiner, A. Vital, O.V. Trzebiatowski, W. Koch et al., Innovative, scratch proof nanocomposites for clear coatings. Compos. Part A 36(4), 473–480 (2005)

    Article  Google Scholar 

  72. M.H. Wichmann, J. Sumfleth, F.H. Gojny, M. Quaresimin, B. Fiedler, K. Schulte, Glass-fibre-reinforced composites with enhanced mechanical and electrical properties–benefits and limitations of a nanoparticle modified matrix. Eng. Fract. Mech. 73(16), 2346–2359 (2006). https://doi.org/10.1016/j.engfracmech.2006.05.015

    Article  Google Scholar 

  73. T. Liu, I.Y. Phang, L. Shen, S.Y. Chow, W.-D. Zhang, Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites. Macromolecules 37(19), 7214–7222 (2004). https://doi.org/10.1021/ma049132t

    Article  CAS  Google Scholar 

  74. Z. Xia, L. Riester, W. Curtin, H. Li, B. Sheldon, J. Liang et al., Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites. Acta Mater. 52(4), 931–944 (2004). https://doi.org/10.1016/j.actamat.2003.10.050

    Article  CAS  Google Scholar 

  75. B.J. Ash, R.W. Siegel, L.S. Schadler, Mechanical behavior of alumina/poly (methyl methacrylate) nanocomposites. Macromolecules 37(4), 1358–1369 (2004). https://doi.org/10.1021/ma0354400

    Article  CAS  Google Scholar 

  76. W. Naous, X.Y. Yu, Q.X. Zhang, K. Naito, Y. Kagawa, Morphology, tensile properties, and fracture toughness of epoxy/Al2O3 nanocomposites. J. Polym. Sci. Part B 44(10), 1466–1473 (2006). https://doi.org/10.1002/polb.20800

    Article  CAS  Google Scholar 

  77. D. Ma, R.W. Siegel, J.-I. Hong, L.S. Schadler, E. Mårtensson, C. Önneby, Influence of nanoparticle surfaces on the electrical breakdown strength of nanoparticle-filled low-density polyethylene. J. Mater. Res. 19(3), 857–863 (2004). https://doi.org/10.1557/jmr.2004.19.3.857

    Article  CAS  Google Scholar 

  78. L. Bokobza, Investigation of local dynamics of polymer chains in the bulk by the excimer fluorescence technique. Prog Polym Sci. 15(3), 337–360 (1990). https://doi.org/10.1016/0079-6700(90)90001-H

    Article  CAS  Google Scholar 

  79. G.A. George, Characterization of solid polymers by luminescence techniques. Pure Appl. Chem. 57(7), 945–954 (1985). https://doi.org/10.1351/pac198557070945

    Article  CAS  Google Scholar 

  80. M. Zammarano, P.H. Maupin, L.-P. Sung, J.W. Gilman, E.D. McCarthy, Y.S. Kim et al., Revealing the interface in polymer nanocomposites. ACS Nano 5(4), 3391–3399 (2011). https://doi.org/10.1021/nn102951n

    Article  CAS  PubMed  Google Scholar 

  81. P. Rittigstein, J.M. Torkelson, Polymer–nanoparticle interfacial interactions in polymer nanocomposites: confinement effects on glass transition temperature and suppression of physical aging. J. Polym. Sci Part B 44(20), 2935–2943 (2006). https://doi.org/10.1002/polb.20925

    Article  CAS  Google Scholar 

  82. S. Venkatachalam, Ultraviolet and visible spectroscopy studies of nanofillers and their polymer nanocomposites. Spectrosc Polym. Nanocompos. (2016). https://doi.org/10.1016/B978-0-323-40183-8.00006-9

    Article  Google Scholar 

  83. Quevedo AC, Guggenheim E, Briffa SM, Adams J, Lofts S, Kwak M, et al. UV-Vis spectroscopic characterization of nanomaterials in aqueous media. 2021. https://www.um.edu.mt/library/oar/handle/123456789/98184.

  84. J.-F. Zhu, Y.-J. Zhu, Microwave-assisted one-step synthesis of polyacrylamide− metal (M= Ag, Pt, Cu) nanocomposites in ethylene glycol. J. Phys. Chem. B 110(17), 8593–8597 (2006). https://doi.org/10.1021/jp060488b

    Article  CAS  PubMed  Google Scholar 

  85. S. Mukherjee, S. Das, S. Nuthi, C.R. Patra, Biocompatible nickel-prussian blue@ silver nanocomposites show potent antibacterial activities. Future Sci. OA 3(4), 233 (2017). https://doi.org/10.4155/fsoa-2017-0048

    Article  CAS  Google Scholar 

  86. I. Saini, J. Rozra, N. Chandak, S. Aggarwal, P.K. Sharma, A. Sharma, Tailoring of electrical, optical and structural properties of PVA by addition of Ag nanoparticles. Mater. Chem. Phys. 139(2–3), 802–810 (2013). https://doi.org/10.1016/j.matchemphys.2013.02.035

    Article  CAS  Google Scholar 

  87. A. Mironenko, E. Modin, A. Sergeev, S. Voznesenskiy, S. Bratskaya, Fabrication and optical properties of chitosan/Ag nanoparticles thin film composites. Chem. Eng. J. 244, 457–463 (2014). https://doi.org/10.1016/j.cej.2014.01.094

    Article  CAS  Google Scholar 

  88. H. Huang, Q. Yuan, X. Yang, Preparation and characterization of metal–chitosan nanocomposites. Colloids Surf. B 39(1–2), 31–37 (2004). https://doi.org/10.1016/j.colsurfb.2004.08.014

    Article  CAS  Google Scholar 

  89. I. Gorelikov, L.M. Field, E. Kumacheva, Hybrid microgels photoresponsive in the near-infrared spectral range. J. Am. Chem. Soc. 126(49), 15938–15939 (2004). https://doi.org/10.1021/ja0448869

    Article  CAS  PubMed  Google Scholar 

  90. R. Contreras-Cáceres, I. Pastoriza-Santos, R.A. Alvarez-Puebla, J. Pérez-Juste, A. Fernández-Barbero, L.M. Liz-Marzán, Growing Au/Ag nanoparticles within microgel colloids for improved surface-enhanced Raman scattering detection. Chem. A 16(31), 9462–9467 (2010). https://doi.org/10.1002/chem.201001261

    Article  CAS  Google Scholar 

  91. D. Suzuki, H. Kawaguchi, Modification of gold nanoparticle composite nanostructures using thermosensitive core− shell particles as a template. Langmuir 21(18), 8175–8179 (2005). https://doi.org/10.1021/la0504356

    Article  CAS  PubMed  Google Scholar 

  92. R. Contreras-Cáceres, A. Sánchez-Iglesias, M. Karg, I. Pastoriza-Santos, J. Pérez-Juste, J. Pacifico et al., Encapsulation and growth of gold nanoparticles in thermoresponsive microgels. Adv Mater. 20(9), 1666–1670 (2008). https://doi.org/10.1002/adma.200800064

    Article  CAS  Google Scholar 

  93. Z.H. Farooqi, A. Ijaz, R. Begum, K. Naseem, M. Usman, M. Ajmal et al., Synthesis and characterization of inorganic–organic polymer microgels for catalytic reduction of 4-nitroaniline in aqueous medium. Polym. Compos. 39(3), 645–653 (2018). https://doi.org/10.1002/pc.23980

    Article  CAS  Google Scholar 

  94. J. Zhang, S. Xu, E. Kumacheva, Polymer microgels: reactors for semiconductor, metal, and magnetic nanoparticles. J. Am. Chem. Soc. 126(25), 7908–7914 (2004). https://doi.org/10.1021/ja031523k

    Article  CAS  PubMed  Google Scholar 

  95. I. Pastoriza-Santos, J. Pérez-Juste, L.M. Liz-Marzán, Silica-coating and hydrophobation of CTAB-stabilized gold nanorods. Chem Mater. 18(10), 2465–2467 (2006). https://doi.org/10.1021/cm060293g

    Article  CAS  Google Scholar 

  96. Y. Tang, T. Wu, B. Hu, Q. Yang, L. Liu, B. Yu et al., Synthesis of thermo-and pH-responsive Ag nanoparticle-embedded hybrid microgels and their catalytic activity in methylene blue reduction. Mater. Chem. Phys. 149, 460–466 (2015). https://doi.org/10.1016/j.matchemphys.2014.10.045

    Article  CAS  Google Scholar 

  97. M. Ajmal, Z.H. Farooqi, M. Siddiq, Silver nanoparticles containing hybrid polymer microgels with tunable surface plasmon resonance and catalytic activity. Korean J. Chem. Eng. 30(11), 2030–2036 (2013). https://doi.org/10.1007/s11814-013-0150-4

    Article  CAS  Google Scholar 

  98. S. ur Rehman, A.R. Khan, A. Shah, A. Badshah, M. Siddiq, Preparation and characterization of poly (N-isoproylacrylamide-co-dimethylaminoethyl methacrylate) microgels and their composites of gold nanoparticles. Colloids Surf. Physicochem. Eng. Aspects. 520, 826–833 (2017). https://doi.org/10.1016/j.colsurfa.2017.02.060

    Article  CAS  Google Scholar 

  99. L.A. Shah, M. Sayed, M. Fayaz, I. Bibi, M. Nawaz, M. Siddiq, Ag-loaded thermo-sensitive composite microgels for enhanced catalytic reduction of methylene blue. Nanotechnol. Environ. Eng. 2(1), 1–7 (2017). https://doi.org/10.1007/s41204-017-0026-7

    Article  CAS  Google Scholar 

  100. Y. Lu, S. Proch, M. Schrinner, M. Drechsler, R. Kempe, M. Ballauff, Thermosensitive core-shell microgel as a “nanoreactor” for catalytic active metal nanoparticles. J. Mater. Chem. 19(23), 3955–3961 (2009). https://doi.org/10.1039/B822673N

    Article  CAS  Google Scholar 

  101. M. Ahmad, S. Nadeem, S.U. Hassan, S. Jamil, M. Javed, A. Mohyuddin et al., UV/VIS absorption properties of metal sulphate polymer nanocomposites. Digest J. Nanomater. Biostruct. (DJNB) 16(4), 15 (2021)

    Google Scholar 

  102. S.A. Hussen, Structural and optical characterization of pure and SnZrO3 doped PS based polymer nanocomposite. Mater. Res. Express 7(10), 105302 (2020). https://doi.org/10.1088/2053-1591/abbb53

    Article  CAS  Google Scholar 

  103. L.A. Shah, A. Haleem, M. Sayed, M. Siddiq, Synthesis of sensitive hybrid polymer microgels for catalytic reduction of organic pollutants. J. Environ. Chem. Eng. 4(3), 3492–3497 (2016). https://doi.org/10.1016/j.jece.2016.07.029

    Article  CAS  Google Scholar 

  104. Y.-Y. Liu, X.-Y. Liu, J.-M. Yang, D.-L. Lin, X. Chen, L.-S. Zha, Investigation of Ag nanoparticles loading temperature responsive hybrid microgels and their temperature controlled catalytic activity. Colloids Surf. Physicochem. Eng. Aspects. 393, 105–110 (2012). https://doi.org/10.1016/j.colsurfa.2011.11.007

    Article  CAS  Google Scholar 

  105. Z.H. Farooqi, S.R. Khan, T. Hussain, R. Begum, K. Ejaz, S. Majeed et al., Effect of crosslinker feed content on catalaytic activity of silver nanoparticles fabricated in multiresponsive microgels. Korean J. Chem. Eng. 31(9), 1674–1680 (2014). https://doi.org/10.1007/s11814-014-0117-0

    Article  CAS  Google Scholar 

  106. R. Begum, Z.H. Farooqi, E. Ahmed, K. Naseem, S. Ashraf, A. Sharif et al., Catalytic reduction of 4-nitrophenol using silver nanoparticles-engineered poly (N-isopropylacrylamide-co-acrylamide) hybrid microgels. Appl. Organomet. Chem. 31(2), e3563 (2017). https://doi.org/10.1002/aoc.3563

    Article  CAS  Google Scholar 

  107. Okitsu K. UV-vis spectroscopy for characterization of metal nanoparticles formed from reduction of metal ions during ultrasonic irradiation. UV-VIS and Photoluminescence Spectroscopy for Nanomaterials Characterization. Springer; 2013. p. 151–77.

  108. Böhme U, Scheler U. Interfaces in polymer nanocomposites–An NMR study. AIP Conf Proc: AIP Publishing LLC; 2016. p. 090009

  109. F.A. Bovey, P.A. Mirau, NMR of Polymers (Academic Press, San Diego, 1996)

    Google Scholar 

  110. K. Schmidt-Rohr, H.W. Spiess, Multidimensional Solid-State NMR and Polymers (Elsevier, Amsterdam, 2012)

    Google Scholar 

  111. P.A. Mirau, S.A. Heffner, M. Schilling, Fast magic-angle spinning proton NMR studies of polymers at surfaces and interfaces. Solid State Nucl. Magn. Reson. 16(1–2), 47–53 (2000). https://doi.org/10.1016/S0926-2040(00)00053-9

    Article  CAS  PubMed  Google Scholar 

  112. W. Li, L. Hou, Z. Chen, An NMR investigation of phase structure and chain dynamics in the polyethylene/montmorillonite nanocomposites. J. Nanomater. (2013). https://doi.org/10.1155/2013/937210

    Article  Google Scholar 

  113. T. Rodrigues, M.I. Tavares, I. Soares, A. Moreira, A. Ferreira, The use of solid state NMR to characterize high density polyethylene/organoclay nanocomposites. Chemis. Chem. Technol. 2009. http://ena.lp.edu.ua:8080/handle/ntb/7213.

  114. C.J. Brinker, G.W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing (Academic Press, Cambridge, 2013)

    Google Scholar 

  115. D.R. Uhlmann, D.R. Ulrich, Ultrastructure Processing of Advanced Materials (Arizona Univ Tucson, Tucson, 1992)

    Google Scholar 

  116. Mark JE. Hybrid organic-inorganic composites. ACS Symp Ser 1995.

  117. L.C. Klein, Sol-Gel Technology for Thin Films, Fibers, Preforms, Electronics and Specialty Shapes (William Andrew, Norwich, 1988)

    Google Scholar 

  118. P. Judeinstein, C. Sanchez, Hybrid organic–inorganic materials: a land of multidisciplinarity. J. Mater. Chem. 6(4), 511–525 (1996). https://doi.org/10.1039/JM9960600511

    Article  CAS  Google Scholar 

  119. C. Sanchez, F. Ribot, B. Lebeau, Molecular design of hybrid organic-inorganic nanocomposites synthesized via sol-gel chemistry. J. Mater. Chem. 9(1), 35–44 (1999). https://doi.org/10.1039/A805538F

    Article  CAS  Google Scholar 

  120. P. Judeinstein, J. Livage, A. Zarudiansky, R. Rose, An, “all gel” electrochromic device. Solid State Ion. 28, 1722–1725 (1988). https://doi.org/10.1016/0167-2738(88)90449-3

    Article  Google Scholar 

  121. B. Orel, U. Opara Krašovec, U. Lavrenčič Štangar, P. Judeinstein, All sol-gel electrochromic devices with li+ ionic conductor, WO3 electrochromic films and SnO2 counter-electrode films. J. Sol-Gel. Sci. Technol. 11(1), 87–104 (1998). https://doi.org/10.1023/A:1008697101623

    Article  CAS  Google Scholar 

  122. P. Judeinstein, M. Brik, J. Bayle, J. Courtieu, J. Rault, Mobility range in hybrid materials. MRS Online Proc. Libr. 346(1), 937–942 (1994). https://doi.org/10.1557/PROC-346-937

    Article  CAS  Google Scholar 

  123. M. Brik, J. Titman, J. Bayle, P. Judeinstein, Mapping of motional heterogeneity in organic-inorganic nanocomposite gels. J. Polym. Sci. Part B 34(15), 2533–2542 (1996). https://doi.org/10.1002/(SICI)1099-0488(19961115)34:15%3C2533::AID-POLB1%3E3.0.CO;2-U

    Article  CAS  Google Scholar 

  124. K. Dahmouche, P. De Souza, T. Bonagamba, H. Paneppucci, P. Judeinstein, S.H. Pulcinelli et al., Investigation of new ion conducting ormolytes silica-polypropyleneglycol. J. Sol-Gel. Sci. Technol. 13(1), 909–913 (1998). https://doi.org/10.1023/A:1008627424438

    Article  CAS  Google Scholar 

  125. K. Dahmouche, M. Atik, N.C. Mello, T.J. Bonagamba, H. Panepucci, M.A. Aegerter et al., Investigation of new ion-conducting ORMOLYTES: structure and properties. J. Sol-Gel. Sci. Technol. 8(1), 711–715 (1997). https://doi.org/10.1007/BF02436927

    Article  CAS  Google Scholar 

  126. D. Ravaine, A. Seminel, Y. Charbouillot, M. Vincens, A new family of organically modified silicates prepared from gels. J. Non-Cryst. Solids 82(1–3), 210–219 (1986). https://doi.org/10.1016/0022-3093(86)90133-X

    Article  CAS  Google Scholar 

  127. P.H. de Souza, R.F. Bianchi, K. Dahmouche, P. Judeinstein, R.M. Faria, T.J. Bonagamba, Solid-state NMR, ionic conductivity, and thermal studies of lithium-doped Siloxane− poly (propylene glycol) organic− inorganic nanocomposites. Chem. Mater. 13(10), 3685–3692 (2001). https://doi.org/10.1021/cm011023v

    Article  CAS  Google Scholar 

  128. V. Kumar, R.R. Reddy, B.P. Kumar, C.V. Avadhani, S. Ganapathy, N. Chandrakumar et al., Lithium speciation in the LiPF6/PC electrolyte studied by two-dimensional heteronuclear overhauser enhancement and pulse-field gradient diffusometry NMR. J. Phys. Chem. C 123(15), 9661–9672 (2019). https://doi.org/10.1021/acs.jpcc.8b11599

    Article  CAS  Google Scholar 

  129. S.J. Tambio, M. Deschamps, V. Sarou-Kanian, A. Etiemble, T. Douillard, E. Maire et al., Self-diffusion of electrolyte species in model battery electrodes using magic angle spinning and pulsed field gradient nuclear magnetic resonance. J. Power Sources 362, 315–322 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.010

    Article  CAS  Google Scholar 

  130. G. Tulibaeva, A. Shestakov, V. Volkov, O. Yarmolenko, Structure of LiBF4 solvate complexes in ethylene carbonate, based on high-resolution NMR and quantum-chemical data. Russ. J. Phys. Chem. A 92(4), 749–755 (2018). https://doi.org/10.1134/S0036024418040313

    Article  CAS  Google Scholar 

  131. Y. Wang, W. Chen, Q. Zhao, G. Jin, Z. Xue, Y. Wang et al., Ionicity of deep eutectic solvents by Walden plot and pulsed field gradient nuclear magnetic resonance (PFG-NMR). Phys. Chem. Chem. Phys. 22(44), 25760–25768 (2020). https://doi.org/10.1039/D0CP01431A

    Article  CAS  PubMed  Google Scholar 

  132. D. Lysak, A. Marinin, S. Dzhimak, Investigating the nuclear magnetic resonance of the structure of electrolyte based on a LiClO4—ethylene carbonate solution. Bull. Russ. Acad. Sci. Phys. 75(12), 1668–1670 (2011). https://doi.org/10.3103/S1062873811120227

    Article  CAS  Google Scholar 

  133. L. Meabe, T.V. Huynh, N. Lago, H. Sardon, C. Li, L.A. O’Dell et al., Poly (ethylene oxide carbonates) solid polymer electrolytes for lithium batteries. Electrochim. Acta 264, 367–375 (2018). https://doi.org/10.1016/j.electacta.2018.01.101

    Article  CAS  Google Scholar 

  134. Y.-X. Xiang, G. Zheng, G. Zhong, D. Wang, R. Fu, Y. Yang, Toward understanding of ion dynamics in highly conductive lithium ion conductors: some perspectives by solid state NMR techniques. Solid State Ion. 318, 19–26 (2018). https://doi.org/10.1016/j.ssi.2017.11.025

    Article  CAS  Google Scholar 

  135. M. Becher, S. Becker, L. Hecht, M. Vogel, From local to diffusive dynamics in polymer electrolytes: NMR studies on coupling of polymer and ion dynamics across length and time scales. Macromolecules 52(23), 9128–9139 (2019). https://doi.org/10.1021/acs.macromol.9b01400

    Article  CAS  Google Scholar 

  136. X. Fu, Y. Liu, W. Wang, L. Han, J. Yang, M. Ge et al., Probing the fast lithium-ion transport in small-molecule solid polymer electrolytes by solid-state NMR. Macromolecules 53(22), 10078–10085 (2020). https://doi.org/10.1021/acs.macromol.0c01521

    Article  CAS  Google Scholar 

  137. B.-H. Wang, T. Xia, Q. Chen, Y.-F. Yao, Probing the dynamics of Li+ ions on the crystal surface: a solid-state NMR study. Polymers 12(2), 391 (2020). https://doi.org/10.3390/polym12020391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. M.P. Rosenwinkel, M. Schönhoff, Polymer-induced inversion of the Li+ drift direction in ionic liquid-based ternary polymer electrolytes. Macromol. Chem. Phys. 223(8), 2100320 (2022). https://doi.org/10.1002/macp.202100320

    Article  CAS  Google Scholar 

  139. N. Verdier, D. Lepage, R. Zidani, A. Prebe, D. Ayme-Perrot, C. Pellerin et al., Cross-linked polyacrylonitrile-based elastomer used as gel polymer electrolyte in Li-Ion battery. ACS Appl. Energy Mater. 3(1), 1099–1110 (2019). https://doi.org/10.1021/acsaem.9b02129

    Article  CAS  Google Scholar 

  140. R. Poiana, E. Lufrano, A. Tsurumaki, C. Simari, I. Nicotera, M.A. Navarra, Safe gel polymer electrolytes for high voltage Li-batteries. Electrochim. Acta 401, 139470 (2022). https://doi.org/10.1016/j.electacta.2021.139470

    Article  CAS  Google Scholar 

  141. L. Carbone, M. Gobet, J. Peng, M. Devany, B. Scrosati, S. Greenbaum et al., Polyethylene glycol dimethyl ether (PEGDME)-based electrolyte for lithium metal battery. J. Power Sources 299, 460–464 (2015). https://doi.org/10.1016/j.jpowsour.2015.08.090

    Article  CAS  Google Scholar 

  142. D. Saikia, Y. Chen-Yang, Y. Chen, Y. Li, S. Lin, 7Li NMR spectroscopy and ion conduction mechanism of composite gel polymer electrolyte: a comparative study with variation of salt and plasticizer with filler. Electrochim. Acta 54(4), 1218–1227 (2009). https://doi.org/10.1016/j.electacta.2008.09.001

    Article  CAS  Google Scholar 

  143. J. Popovic, D. Brandell, S. Ohno, K.B. Hatzell, J. Zheng, Y.-Y. Hu, Polymer-based hybrid battery electrolytes: theoretical insights, recent advances and challenges. J. Mater. Chem. A 9(10), 6050–6069 (2021). https://doi.org/10.1039/D0TA11679C

    Article  CAS  Google Scholar 

  144. V.I. Volkov, A.V. Chernyak, I.A. Avilova, N.A. Slesarenko, D.L. Melnikova, V.D. Skirda, Molecular and ionic diffusion in ion exchange membranes and biological systems (Cells and proteins) studied by NMR. Membranes 11(6), 385 (2021). https://doi.org/10.3390/membranes11060385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. P. Mustarelli, E. Quartarone, C. Capiglia, C. Tomasi, P. Ferloni, A. Magistris, Host–guest interactions in fluorinated polymer electrolytes: A 7 Li–13 C NMR study. J. Chem. Phys. 111(8), 3761–3768 (1999). https://doi.org/10.1063/1.479656

    Article  CAS  Google Scholar 

  146. D. Morales, R.E. Ruther, J. Nanda, S. Greenbaum, Ion transport and association study of glyme-based electrolytes with lithium and sodium salts. Electrochim. Acta 304, 239–245 (2019). https://doi.org/10.1016/j.electacta.2019.02.110

    Article  CAS  Google Scholar 

  147. R. Konefał, Z. Morávková, B. Paruzel, V. Patsula, S. Abbrent, K. Szutkowski et al., Effect of PAMAM dendrimers on interactions and transport of LiTFSI and NaTFSI in propylene carbonate-based electrolytes. Polymers 12(7), 1595 (2020). https://doi.org/10.3390/polym12071595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. L. Carbone, S. Munoz, M. Gobet, M. Devany, S. Greenbaum, J. Hassoun, Characteristics of glyme electrolytes for sodium battery: nuclear magnetic resonance and electrochemical study. Electrochim. Acta 231, 223–229 (2017). https://doi.org/10.1016/j.electacta.2017.02.007

    Article  CAS  Google Scholar 

  149. R. Zettl, M. Gombotz, D. Clarkson, S.G. Greenbaum, P. Ngene, P.E. De Jongh et al., Li-Ion diffusion in nanoconfined LiBH4-LiI/Al2O3: from 2D bulk transport to 3D long-range interfacial dynamics. ACS Appl. Mater. Interfaces 12(34), 38570–38583 (2020). https://doi.org/10.1021/acsami.0c10361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Maier J. Nanoionics: ion transport and electrochemical storage in confined systems. Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group. 2011: doi: https://doi.org/10.1142/9789814317665_0023.

  151. N. Sata, K. Eberman, K. Eberl, J. Maier, Mesoscopic fast ion conduction in nanometre-scale planar heterostructures. Nature 408(6815), 946–949 (2000). https://doi.org/10.1038/35050047

    Article  CAS  PubMed  Google Scholar 

  152. O. Yarmolenko, A. Yudina, A. Marinin, A. Chernyak, V. Volkov, N. Shuvalova et al., Nanocomposite network polymer gel-electrolytes: TiO2-and Li2TiO3-nanoparticle effects on their structure and properties. Russ. J. Electrochem. 51(5), 412–420 (2015). https://doi.org/10.1134/S1023193515050171

    Article  CAS  Google Scholar 

  153. N. Wu, P.H. Chien, Y. Qian, Y. Li, H. Xu, N.S. Grundish et al., Enhanced surface interactions enable fast Li+ conduction in oxide/polymer composite electrolyte. Angew. Chem. Int. Ed. 59(10), 4131–4137 (2020). https://doi.org/10.1002/anie.201914478

    Article  CAS  Google Scholar 

  154. S. Menkin, M. Lifshitz, A. Haimovich, Goor H, Blanga R, Greenbaum S, et al., Evaluation of ion-transport in composite polymer-in-ceramic electrolytes: Case study of active and inert ceramics. Electrochim. Acta 304, 447–455 (2019). https://doi.org/10.1016/j.electacta.2019.03.006

    Article  CAS  Google Scholar 

  155. V.I. Volkov, O.V. Yarmolenko, A.V. Chernyak, N.A. Slesarenko, I.A. Avilova, G.R. Baymuratova et al., Polymer electrolytes for lithium-ion batteries studied by NMR techniques. Membranes 12(4), 416 (2022). https://doi.org/10.3390/membranes12040416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. G. Foran, N. Verdier, D. Lepage, C. Malveau, N. Dupré, M. Dollé, Use of solid-state NMR spectroscopy for the characterization of molecular structure and dynamics in solid polymer and hybrid electrolytes. Polymers 13(8), 1207 (2021). https://doi.org/10.3390/polym13081207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. A. Hull, A new method of chemical analysis. J. Am. Chem. Soc. 41(8), 1168–1175 (1919). https://doi.org/10.1021/ja02229a003

    Article  CAS  Google Scholar 

  158. Joshi NJ. Studies of nano sized high dielectric constant materials. Ph D Thesis. 2012.

  159. Bishnoi A, Kumar S, Joshi N. Wide-angle X-ray diffraction (WXRD): technique for characterization of nanomaterials and polymer nanocomposites. Microscopy methods in nanomaterials characterization. Elsevier; 2017. pp. 313–37.

  160. P.H. Suman, M.O. Orlandi, Influence of processing parameters on nanomaterials synthesis efficiency by a carbothermal reduction process. J. Nanopart. Res. 13(5), 2081–2088 (2011). https://doi.org/10.1007/s11051-010-9964-8

    Article  CAS  Google Scholar 

  161. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, O. Kamigaito, Synthesis of nylon 6–clay hybrid by montmorillonite intercalated with ϵ-caprolactam. J. Polym. Sci. Part A 31(4), 983–986 (1993). https://doi.org/10.1002/pola.1993.080310418

    Article  CAS  Google Scholar 

  162. A.B. Morgan, J.W. Gilman, Characterization of polymer-layered silicate (clay) nanocomposites by transmission electron microscopy and X-ray diffraction: a comparative study. J. Appl. Polym. Sci. 87(8), 1329–1338 (2003). https://doi.org/10.1002/app.11884

    Article  CAS  Google Scholar 

  163. M. Chen, J. Yin, X. Liu, Y. Feng, B. Su, Q. Lei, Microstructure and dielectric property study of polyimide/BaTiO3 nanocomposite films. Thin Solid Films 544, 116–119 (2013). https://doi.org/10.1016/j.tsf.2013.04.062

    Article  CAS  Google Scholar 

  164. X. Liu, J. Yin, M. Chen, W. Bu, W. Cheng, Z. Wu, Effect of content on microstructure and dielectric performance of PI/Al2O3 hybrid films. Nanosci. Nanotechnol. Lett. 3(2), 226–229 (2011). https://doi.org/10.1166/nnl.2011.1158

    Article  CAS  Google Scholar 

  165. X. Xia, J. Yin, B. Su, D. Hui, R. Yu, X. Liu, Quantitative determining interface information of nano composite by synchrotron radiation small-angle X-ray scattering. Compos. B 120, 92–96 (2017). https://doi.org/10.1016/j.compositesb.2017.03.058

    Article  CAS  Google Scholar 

  166. G. Sandí, H. Joachin, R. Kizilel, S. Seifert, K.A. Carrado, In situ SAXS studies of the structural changes of polymer nanocomposites used in battery applications. Chem. Mater. 15(4), 838–843 (2003). https://doi.org/10.1021/cm020670z

    Article  CAS  Google Scholar 

  167. G.O. Park, J. Yoon, E. Park, S.B. Park, H. Kim, K.H. Kim et al., In operando monitoring of the pore dynamics in ordered mesoporous electrode materials by small angle X-ray scattering. ACS Nano 9(5), 5470–5477 (2015). https://doi.org/10.1021/acsnano.5b01378

    Article  CAS  PubMed  Google Scholar 

  168. R. Alcántara, M. Jaraba, P. Lavela, J. Tirado, NiCo2O4 spinel: first report on a transition metal oxide for the negative electrode of sodium-ion batteries. Chem. Mater. 14(7), 2847–2848 (2002). https://doi.org/10.1021/cm025556v

    Article  CAS  Google Scholar 

  169. W. Schmidt, H. Amenitsch, High dynamics of vapor adsorption in ordered mesoporous carbon CMK-5: a small angle X-ray scattering study. J. Phys. Chem. C 124(39), 21418–21425 (2020). https://doi.org/10.1021/acs.jpcc.0c05356

    Article  CAS  Google Scholar 

  170. S.A. Milenin, E.V. Selezneva, P.A. Tikhonov, V.G. Vasilev, A.I. Buzin, N.K. Balabaev et al., Hybrid polycarbosilane-siloxane dendrimers: synthesis and properties. Polymers 13(4), 606 (2021). https://doi.org/10.3390/polym13040606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. H. Tajima, P.A. Penttilä, T. Imai, K. Yamamoto, Y. Yuguchi, Observation of in vitro cellulose synthesis by bacterial cellulose synthase with time-resolved small angle X-ray scattering. Int. J. Biol. Macromol. 130, 765–777 (2019). https://doi.org/10.1016/j.ijbiomac.2019.02.167

    Article  CAS  PubMed  Google Scholar 

  172. J. Engström, A. Jimenez, E. Malmström, Nanoparticle rearrangement under stress in networks of cellulose nanofibrils using in situ SAXS during tensile testing. Nanoscale 12(11), 6462–6471 (2020). https://doi.org/10.1039/C9NR10964A

    Article  PubMed  Google Scholar 

  173. C.E. Blanchet, D.I. Svergun, Small-angle X-ray scattering on biological macromolecules and nanocomposites in solution. Annu. Rev. Phys. Chem. 64, 37–54 (2013)

    Article  CAS  PubMed  Google Scholar 

  174. M. Zienkiewicz-Strzałka, A. Deryło-Marczewska, S. Pikus, The synthesis and nanostructure investigation of noble metal-based nanocomposite materials. JMatS. 56(23), 13128–13145 (2021). https://doi.org/10.1007/s10853-021-06127-2

    Article  CAS  Google Scholar 

  175. S. Mourdikoudis, R.M. Pallares, N.T. Thanh, Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale 10(27), 12871–12934 (2018). https://doi.org/10.1039/C8NR02278J

    Article  CAS  PubMed  Google Scholar 

  176. Yazid H, Murshidi JA, Jamro R, Harun MM, Mohamed AA. Composite material characterisation using an advanced small angle x-ray (SAXS) technique. IOP Conference Series: Materials Science and Engineering: IOP Publishing; 2018. p. 012026.

  177. Z.H. Chen, S.H. Hwang, X.-B. Zeng, J. Roh, J. Jang, G. Ungar, SAXS characterization of polymer-embedded hollow nanoparticles and of their shell porosity. J. Appl. Crystallogr. 46(6), 1654–1664 (2013).

    Article  CAS  Google Scholar 

  178. W. Wang, X. Chen, Q. Cai, G. Mo, L. Jiang, K. Zhang et al., In situ SAXS study on size changes of platinum nanoparticles with temperature. Eur. Phys. J. B 65(1), 57–64 (2008). https://doi.org/10.1140/epjb/e2008-00322-7

    Article  CAS  Google Scholar 

  179. T. Li, A.J. Senesi, B. Lee, Small angle X-ray scattering for nanoparticle research. Chem. Rev. 116(18), 11128–11180 (2016). https://doi.org/10.1021/acs.chemrev.5b00690

    Article  CAS  PubMed  Google Scholar 

  180. X. Zhang, S. Bhuvana, L.S. Loo, Characterization of layered silicate dispersion in polymer nanocomposites using Fourier transform infrared spectroscopy. J. Appl. Polym. Sci. 125(S1), E175–E180 (2012). https://doi.org/10.1002/app.36266

    Article  CAS  Google Scholar 

  181. E. Titus, N. Ali, G. Cabral, J. Gracio, P.R. Babu, M. Jackson, Chemically functionalized carbon nanotubes and their characterization using thermogravimetric analysis, fourier transform infrared, and raman spectroscopy. J. Mater. Eng. Perform. 15(2), 182–186 (2006). https://doi.org/10.1361/105994906X95841

    Article  CAS  Google Scholar 

  182. S. Hussain, P. Jha, A. Chouksey, R. Raman, S. Islam, T. Islam et al., Spectroscopic investigation of modified single wall carbon nanotube (SWCNT). J. Mod. Phys. 2(06), 538 (2011). https://doi.org/10.4236/jmp.2011.26063

    Article  CAS  Google Scholar 

  183. C.L. Ngo, Q.T. Le, T.T. Ngo, D.N. Nguyen, M.T. Vu, Surface modification and functionalization of carbon nanotube with some organic compounds. Adv. Nat. Sci. 4(3), 035017 (2013). https://doi.org/10.1088/2043-6262/4/3/035017

    Article  CAS  Google Scholar 

  184. S.H. Lee, S.H. Choi, S.Y. Kim, J.I. Choi, J.R. Lee, J.R. Youn, Degradation and dynamic properties of poly (amide-co-imide)/carbon nanotube composite films. Polym. Polym. Compos. 18(7), 381–390 (2010).

    CAS  Google Scholar 

  185. A.E. Deniz, H.A. Vural, B. Ortaç, T. Uyar, Gold nanoparticle/polymer nanofibrous composites by laser ablation and electrospinning. Mater. Lett. 65(19–20), 2941–2943 (2011). https://doi.org/10.1016/j.matlet.2011.06.045

    Article  CAS  Google Scholar 

  186. N.Y. Al-Attabi, G. Kaur, R. Adhikari, P. Cass, M. Bown, M. Evans et al., Preparation and characterization of highly conductive polyurethane composites containing graphene and gold nanoparticles. JMatS. 52(19), 11774–11784 (2017). https://doi.org/10.1007/s10853-017-1335-8

    Article  CAS  Google Scholar 

  187. L. Bokobza, Filled elastomers: A new approach based on measurements of chain orientation. Polymer 42(12), 5415–5423 (2001). https://doi.org/10.1016/S0032-3861(00)00853-3

    Article  CAS  Google Scholar 

  188. Bokobza L. Infrared analysis of elastomeric composites under uniaxial extension. Macromolecular Symposia: Wiley Online Library; 2005. pp. 45–60.

  189. S. Besbes, I. Cermelli, L. Bokobza, L. Monnerie, I. Bahar, B. Erman et al., Segmental orientation in model networks of poly (dimethylsiloxane): fourier-transform infrared dichroism measurements and theoretical interpretation. Macromolecules 25(7), 1949–1954 (1992). https://doi.org/10.1021/ma00033a018

    Article  CAS  Google Scholar 

  190. Cole KC, Perrin‐Sarazin F, Dorval‐Douville G. Infrared spectroscopic characterization of polymer and clay platelet orientation in blown films based on polypropylene‐clay nanocomposite. Macromolecular symposia: Wiley Online Library; 2005. pp. 1–10.

  191. L. Bokobza, G. Garnaud, P. Beaunier, J.-L. Bruneel, Vibrational and electrical investigations of a uniaxially stretched polystyrene/carbon nanotube composite. Vib. Spectrosc. 67, 6–13 (2013). https://doi.org/10.1016/j.vibspec.2013.03.002

    Article  CAS  Google Scholar 

  192. B.Z. Kurt, F. Uckaya, Z. Durmus, Chitosan and carboxymethyl cellulose based magnetic nanocomposites for application of peroxidase purification. Int. J. Biol. Macromol. 96, 149–160 (2017). https://doi.org/10.1016/j.ijbiomac.2016.12.042

    Article  CAS  Google Scholar 

  193. Z. Rafiee, Z. Panji, Synthesis and characterization of optically active magnetic PAI/Fe3O4 nanocomposites. Amino Acids 50(8), 1007–1012 (2018). https://doi.org/10.1007/s00726-018-2577-8

    Article  CAS  PubMed  Google Scholar 

  194. J. Gu, W. Jiang, F. Wang, M. Chen, J. Mao, T. Xie, Facile removal of oils from water surfaces through highly hydrophobic and magnetic polymer nanocomposites. Appl. Surf. Sci. 301, 492–499 (2014). https://doi.org/10.1016/j.apsusc.2014.02.112

    Article  CAS  Google Scholar 

  195. Mai Y-W, Yu Z-Z. Polymer nanocomposites. 2006.

  196. A. Mohammadi, M. Barikani, M.M. Lakouraj, Biocompatible polyurethane/thiacalix [4] arenes functionalized Fe3O4 magnetic nanocomposites: synthesis and properties. Mater. Sci. Eng. C 66, 106–118 (2016). https://doi.org/10.1016/j.msec.2016.04.064

    Article  CAS  Google Scholar 

  197. A. Gong, W. Ping, J. Wang, X. Zhu, Cyclodextrin polymer/Fe3O4 nanocomposites as solid phase extraction material coupled with UV–vis spectrometry for the analysis of rutin. Spectrochim. Acta Part A 122, 331–336 (2014). https://doi.org/10.1016/j.saa.2013.11.050

    Article  CAS  Google Scholar 

  198. K.R. Reddy, K.P. Lee, A.I. Gopalan, Self-assembly approach for the synthesis of electro-magnetic functionalized Fe3O4/polyaniline nanocomposites: effect of dopant on the properties. Colloids Surf. Physicochem. Eng. Aspects. 320(1–3), 49–56 (2008). https://doi.org/10.1016/j.colsurfa.2007.12.057

    Article  CAS  Google Scholar 

  199. M.-S. Shin, J.-K. Kim, J.-W. Kim, C.A.M. Moraes, H.-S. Kim, K.-K. Koo, Reaction characteristics of Al/Fe2O3 nanocomposites. J. Ind. Eng. Chem. 18(5), 1768–1773 (2012). https://doi.org/10.1016/j.jiec.2012.04.003

    Article  CAS  Google Scholar 

  200. D. Mishra, R. Arora, S. Lahiri, S.S. Amritphale, N. Chandra, Synthesis and characterization of iron oxide nanoparticles by solvothermal method. Prot. Met. Phys. Chem. Surf. 50(5), 628–631 (2014). https://doi.org/10.1134/S2070205114050128

    Article  CAS  Google Scholar 

  201. Margenot AJ, Calderón FJ, Goyne KW, Dmukome FN, Parikh S. IR spectroscopy, soil analysis applications. Encyclopedia of spectroscopy and spectrometry. Elsevier; 2016. pp. 448–54.

  202. B. Unal, M. Toprak, Z. Durmus, H. Sözeri, A. Baykal, Synthesis, structural and conductivity characterization of alginic acid–Fe3O4 nanocomposite. J. Nanopart. Res. 12(8), 3039–3048 (2010). https://doi.org/10.1007/s11051-010-9898-1

    Article  CAS  Google Scholar 

  203. C. Chanéac, E. Tronc, J.P. Jolivet, Magnetic iron oxide–silica nanocomposites Synthesis and characterization. J. Mater. Chem. 6(12), 1905–1911 (1996). https://doi.org/10.1039/JM9960601905

    Article  Google Scholar 

  204. D. Ding, X. Yan, X. Zhang, Q. He, B. Qiu, D. Jiang et al., Preparation and enhanced properties of Fe3O4 nanoparticles reinforced polyimide nanocomposites. Superlatt. Microstruct. 85, 305–320 (2015). https://doi.org/10.1016/j.spmi.2015.03.008

    Article  CAS  Google Scholar 

  205. M. Bagherzadeh, O. Mousavi, Z.S. Ghahfarokhi, Fabrication and characterization of a Fe 3 O 4/polyvinylpyrrolidone (Fe 3 O 4/PVP) nanocomposite as a coating for carbon steel in saline media. New J. Chem. 44(35), 15148–15156 (2020). https://doi.org/10.1039/D0NJ02979C

    Article  Google Scholar 

  206. K. Gipson, K. Stevens, P. Brown, J. Ballato, Infrared spectroscopic characterization of photoluminescent polymer nanocomposites. J. Spectrosc. (2015). https://doi.org/10.1155/2015/489162

    Article  Google Scholar 

  207. M.W. Noh, D.C. Lee, Synthesis and characterization of PS-clay nanocomposite by emulsion polymerization. Polym. Bull. 42(5), 619–626 (1999). https://doi.org/10.1007/s002890050510

    Article  CAS  Google Scholar 

  208. M. Ashjari, A.R. Mahdavian, N.G. Ebrahimi, Y. Mosleh, Efficient dispersion of magnetite nanoparticles in the polyurethane matrix through solution mixing and investigation of the nanocomposite properties. J. Inorg. Organomet. Polym. Mater. 20(2), 213–219 (2010). https://doi.org/10.1007/s10904-010-9337-x

    Article  CAS  Google Scholar 

  209. Z. Alrowaili, T. Taha, K.S. El-Nasser, H. Donya, Significant enhanced optical parameters of PVA-Y2O3 polymer nanocomposite films. J. Inorg. Organomet. Polym Mater. 31(7), 3101–3110 (2021). https://doi.org/10.1007/s10904-021-01995-2

    Article  CAS  Google Scholar 

  210. Acharya N, Prajapati A, Pratap A, Saxena N. FTIR analysis of microwave irradiated polymer nanocomposites. AIP Conf Proc2010. p. 129.

  211. A. Ahmed I, S. Hussein H, H. Ragab A, S. Al-Radadi. Synthesis and characterization of silica-coated oxyhydroxide aluminum/doped polymer nanocomposites: a comparative study and its application as a sorbent. Molecules. 2020;25(7):1520. doi: https://doi.org/10.3390/molecules25071520.

  212. S.F. Bdewi, O.G. Abdullah, B.K. Aziz, A.A. Mutar, Synthesis, structural and optical characterization of MgO nanocrystalline embedded in PVA matrix. J. Inorg. Organomet. Polym Mater. 26(2), 326–334 (2016). https://doi.org/10.1007/s10904-015-0321-3

    Article  CAS  Google Scholar 

  213. P. Nguyen-Tri, P. Ghassemi, P. Carriere, S. Nanda, A.A. Assadi, D.D. Nguyen, Recent applications of advanced atomic force microscopy in polymer science: A review. Polymers 12(5), 1142 (2020). https://doi.org/10.3390/polym12051142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. M. Kelchtermans, M. Lo, E. Dillon, K. Kjoller, C. Marcott, Characterization of a polyethylene–polyamide multilayer film using nanoscale infrared spectroscopy and imaging. Vib Spectrosc. 82, 10–15 (2016). https://doi.org/10.1016/j.vibspec.2015.11.004

    Article  CAS  Google Scholar 

  215. B. Van Eerdenbrugh, M. Lo, K. Kjoller, C. Marcott, L.S. Taylor, Nanoscale mid-infrared evaluation of the miscibility behavior of blends of dextran or maltodextrin with poly (vinylpyrrolidone). Mol Pharm. 9(5), 1459–1469 (2012). https://doi.org/10.1021/mp300059z

    Article  CAS  PubMed  Google Scholar 

  216. A. Mikhalchan, A.M. Banas, K. Banas, A.M. Borkowska, M. Nowakowski, M.B. Breese et al., Revealing chemical heterogeneity of CNT fiber nanocomposites via nanoscale chemical imaging. Chem Mater. 30(6), 1856–1864 (2018). https://doi.org/10.1021/acs.chemmater.7b04065

    Article  CAS  Google Scholar 

  217. G. Van Assche, B. Van Mele, Interphase formation in model composites studied by micro-thermal analysis. Polymer 43(17), 4605–4610 (2002). https://doi.org/10.1016/S0032-3861(02)00298-7

    Article  Google Scholar 

  218. A. Ali, P. Morrow, R. Henda, R. Fagerberg, Deposition of cobalt doped zinc oxide thin film nano-composites via pulsed electron beam ablation. MRS Advances. 1(6), 433–439 (2016). https://doi.org/10.1557/adv.2016.44

    Article  CAS  Google Scholar 

  219. E. Pancani, J. Mathurin, S. Bilent, M.F. Bernet-Camard, A. Dazzi, A. Deniset-Besseau et al., High-Resolution Label-Free Detection of Biocompatible Polymeric Nanoparticles in Cells. Part. Part. Syst. Charact. 35(3), 1700457 (2018). https://doi.org/10.1002/ppsc.201700457

    Article  CAS  Google Scholar 

  220. A. Centrone, Infrared imaging and spectroscopy beyond the diffraction limit. Annu. Rev. Anal. Chem. 8, 101–126 (2015). https://doi.org/10.1146/annurev-anchem-071114-040435

    Article  CAS  Google Scholar 

  221. Xiao L, Schultz ZD. Spectroscopic imaging at the nanoscale: technologies and recent applications. Analytical chemistry. 2018;90(1):440.

  222. W. Fu, W. Zhang, Hybrid AFM for nanoscale physicochemical characterization: recent development and emerging applications. Small 13(11), 1603525 (2017). https://doi.org/10.1002/smll.201603525

    Article  CAS  Google Scholar 

  223. C. Marcott, M. Lo, E. Dillon, K. Kjoller, C. Prater, Interface analysis of composites using AFM-based nanoscale IR and mechanical spectroscopy. Microscopy Today. 23(2), 38–45 (2015). https://doi.org/10.1017/S1551929515000036

    Article  CAS  Google Scholar 

  224. A. Dazzi, C.B. Prater, AFM-IR: Technology and applications in nanoscale infrared spectroscopy and chemical imaging. Chem Rev. 117(7), 5146–5173 (2017). https://doi.org/10.1021/acs.chemrev.6b00448

    Article  CAS  PubMed  Google Scholar 

  225. S. Iijima, Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991).

    Article  CAS  Google Scholar 

  226. L. Bokobza, M. Couzi, J.-L. Bruneel, Raman spectroscopy of polymer–carbon nanomaterial composites. Rubber Chem Technol. 90(1), 37–59 (2017). https://doi.org/10.1533/9780857091390.2.400

    Article  CAS  Google Scholar 

  227. G. Bounos, K.S. Andrikopoulos, T.K. Karachalios, G.A. Voyiatzis, Evaluation of multi-walled carbon nanotube concentrations in polymer nanocomposites by Raman spectroscopy. Carbon 76, 301–309 (2014). https://doi.org/10.1016/j.carbon.2014.04.081

    Article  CAS  Google Scholar 

  228. N. Everall, J. Lumsdon, D. Christopher, The effect of laser-induced heating upon the vibrational Raman spectra of graphites and carbon fibres. Carbon 29(2), 133–137 (1991). https://doi.org/10.1016/0008-6223(91)90064-P

    Article  CAS  Google Scholar 

  229. X. Yan, Y. Kitahama, H. Sato, T. Suzuki, X. Han, T. Itoh et al., Laser heating effect on Raman spectra of styrene–butadiene rubber/multiwalled carbon nanotube nanocomposites. Chem. Phys. Lett. 523, 87–91 (2012). https://doi.org/10.1016/j.cplett.2011.11.082

    Article  CAS  Google Scholar 

  230. C. Kao, R. Young, A Raman spectroscopic investigation of heating effects and the deformation behaviour of epoxy/SWNT composites. Compos. Sci. Technol. 64(15), 2291–2295 (2004). https://doi.org/10.1016/j.compscitech.2004.01.019

    Article  CAS  Google Scholar 

  231. Bokobza L, Zhang J. Raman spectroscopic characterization of multiwall carbon nanotubes and of composites. Express Polymer Letters. 2012;6(7). doi: http://dx.doi.org/https://doi.org/10.3144/expresspolymlett.2012.63.

  232. Bokobza L, Bruneel J-L, Couzi M. Raman spectroscopic investigation of carbon-based materials and their composites. Comparison between carbon nanotubes and carbon black. Chemical Physics Letters. 2013;590:153–9. doi: https://doi.org/10.1016/j.cplett.2013.10.071.

  233. I. Srivastava, R.J. Mehta, Z.-Z. Yu, L. Schadler, N. Koratkar, Raman study of interfacial load transfer in graphene nanocomposites. Appl. Phys. Lett. 98(6), 063102 (2011). https://doi.org/10.1063/1.3552685

    Article  CAS  Google Scholar 

  234. A. Beigbeder, M. Linares, M. Devalckenaere, P. Degée, M. Claes, D. Beljonne et al., CH-π Interactions as the Driving Force for Silicone-Based Nanocomposites with Exceptional Properties. Adv Mater. 20(5), 1003–1007 (2008). https://doi.org/10.1002/adma.200701497

    Article  CAS  Google Scholar 

  235. L. Bokobza, Some issues in rubber nanocomposites: New opportunities for silicone materials. SILICON 1(3), 141–145 (2009). https://doi.org/10.1007/s12633-009-9010-6

    Article  CAS  Google Scholar 

  236. M.D. Frogley, D. Ravich, H.D. Wagner, Mechanical properties of carbon nanoparticle-reinforced elastomers. Compos. Sci. Technol. 63(11), 1647–1654 (2003). https://doi.org/10.1016/S0266-3538(03)00066-6

    Article  CAS  Google Scholar 

  237. N. Kumar, S. Mignuzzi, W. Su, D. Roy, Tip-enhanced Raman spectroscopy: principles and applications. EPJ Techniques and Instrumentation. 2(1), 9 (2015). https://doi.org/10.1140/epjti/s40485-015-0019-5

    Article  Google Scholar 

  238. D. Kurouski, Advances of tip-enhanced Raman spectroscopy (TERS) in electrochemistry, biochemistry, and surface science. Vib Spectrosc. 91, 3–15 (2017). https://doi.org/10.1016/j.vibspec.2016.06.004

    Article  CAS  Google Scholar 

  239. Saito Y, Yanagi K. Using a nano light source to investigate small-scale composite materials. Citeseer; 2008.

  240. Yano T-a, Inouye Y, Kawata S. Nanoscale uniaxial pressure effect of a carbon nanotube bundle on tip-enhanced near-field Raman spectra. Nano Lett. 2006;6(6):1269–73. doi: https://doi.org/10.1021/nl060108y.

  241. Yano T-a, Ichimura T, Kuwahara S, H’Dhili F, Uetsuki K, Okuno Y, et al. Tip-enhanced nano-Raman analytical imaging of locally induced strain distribution in carbon nanotubes. Nature communications. 2013;4(1):1–7. doi: https://doi.org/10.1038/ncomms3592.

  242. Vantasin S, Yan X-l, Suzuki T, Ozaki Y. Tip-Enhanced Raman Scattering of Nanomaterials. e-Journal of Surface Science and Nanotechnology. 2015;13:329–38. doi: https://doi.org/10.1380/ejssnt.2015.329.

  243. T. Suzuki, X. Yan, Y. Kitahama, H. Sato, T. Itoh, T. Miura et al., Tip-enhanced Raman spectroscopy study of local interactions at the interface of styrene–butadiene rubber/multiwalled carbon nanotube nanocomposites. The Journal of Physical Chemistry C. 117(3), 1436–1440 (2013). https://doi.org/10.1021/jp309217y

    Article  CAS  Google Scholar 

  244. K.S. Giesfeldt, R.M. Connatser, M.A. De Jesús, P. Dutta, M.J. Sepaniak, Gold-polymer nanocomposites: studies of their optical properties and their potential as SERS substrates. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering. 36(12), 1134–1142 (2005). https://doi.org/10.1002/jrs.1418

    Article  CAS  Google Scholar 

  245. S. Fateixa, A.V. Girao, H.I. Nogueira, T. Trindade, Polymer based silver nanocomposites as versatile solid film and aqueous emulsion SERS substrates. J. Mater. Chem. 21(39), 15629–15636 (2011). https://doi.org/10.1039/C1JM12444G

    Article  CAS  Google Scholar 

  246. V.K. Rao, T. Radhakrishnan, Tuning the SERS response with Ag-Au nanoparticle-embedded polymer thin film substrates. ACS Appl. Mater. Interfaces. 7(23), 12767–12773 (2015). https://doi.org/10.1021/acsami.5b04180

    Article  CAS  PubMed  Google Scholar 

  247. A. Biswas, I.S. Bayer, D.H. Dahanayaka, L.A. Bumm, Z. Li, F. Watanabe et al., Tailored polymer–metal fractal nanocomposites: an approach to highly active surface enhanced Raman scattering substrates. Nanotechnology 20(32), 325705 (2009). https://doi.org/10.1088/0957-4484/20/32/325705

    Article  CAS  PubMed  Google Scholar 

  248. S. Schlücker, Surface-Enhanced raman spectroscopy: Concepts and chemical applications. Angew Chem Int Ed. 53(19), 4756–4795 (2014). https://doi.org/10.1002/anie.201205748

    Article  CAS  Google Scholar 

  249. Chang J, Zhi X, Zhang A. Application of Graphene in Surface-Enhanced Raman Spectroscopy. Nano Biomed Eng. 2017;9(1). doi: https://doi.org/10.5101/NBE.V9I1.P49-56.

  250. D. Carboni, B. Lasio, V. Alzari, A. Mariani, D. Loche, M.F. Casula et al., Graphene-mediated surface enhanced Raman scattering in silica mesoporous nanocomposite films. Phys. Chem. Chem. Phys. 16(47), 25809–25818 (2014). https://doi.org/10.1039/C4CP03582H

    Article  CAS  PubMed  Google Scholar 

  251. W. Li, S.T. Buschhorn, K. Schulte, W. Bauhofer, The imaging mechanism, imaging depth, and parameters influencing the visibility of carbon nanotubes in a polymer matrix using an SEM. Carbon 49(6), 1955–1964 (2011). https://doi.org/10.1016/j.carbon.2010.12.069

    Article  CAS  Google Scholar 

  252. B.A. Newcomb, L.A. Giannuzzi, K.M. Lyons, P.V. Gulgunje, K. Gupta, Y. Liu et al., High resolution transmission electron microscopy study on polyacrylonitrile/carbon nanotube based carbon fibers and the effect of structure development on the thermal and electrical conductivities. Carbon 93, 502–514 (2015). https://doi.org/10.1016/j.carbon.2015.05.037

    Article  CAS  Google Scholar 

  253. Z. Jin, X. Sun, G. Xu, S.H. Goh, W. Ji, Nonlinear optical properties of some polymer/multi-walled carbon nanotube composites. Chem. Phys. Lett. 318(6), 505–510 (2000). https://doi.org/10.1016/S0009-2614(00)00091-9

    Article  CAS  Google Scholar 

  254. Y. Gao, L. Li, P. Tan, L. Liu, Z. Zhang, Application of Raman spectroscopy in carbon nanotube-based polymer composites. Chin. Sci. Bull. 55(35), 3978–3988 (2010). https://doi.org/10.1007/s11434-010-4100-9

    Article  CAS  Google Scholar 

  255. M. Rahmat, K. Das, P. Hubert, Interaction stresses in carbon nanotube–polymer nanocomposites. ACS Appl. Mater. Interfaces. 3(9), 3425–3431 (2011). https://doi.org/10.1021/am200652f

    Article  CAS  PubMed  Google Scholar 

  256. M. Baibarac, I. Baltog, S. Lefrant, Raman spectroscopic evidence for interfacial interactions in poly (bithiophene)/single-walled carbon nanotube composites. Carbon 47(5), 1389–1398 (2009). https://doi.org/10.1016/j.carbon.2009.01.031

    Article  CAS  Google Scholar 

  257. X. Chen, L. Zhang, M. Zheng, C. Park, X. Wang, C. Ke, Quantitative nanomechanical characterization of the van der Waals interfaces between carbon nanotubes and epoxy. Carbon 82, 214–228 (2015). https://doi.org/10.1016/j.carbon.2014.10.065

    Article  CAS  Google Scholar 

  258. J. Chen, K. Xu, Applications of atomic force microscopy in materials, semiconductors, polymers, and medicine: A minireview. Instrum Sci. Technol. 48(6), 667–681 (2020). https://doi.org/10.1080/10739149.2020.1764030

    Article  CAS  Google Scholar 

  259. M. Cascione, V. De Matteis, F. Persano, S. Leporatti, AFM Characterization of Halloysite Clay Nanocomposites’ Superficial Properties: Current State-of-the-Art and Perspectives. Materials. 15(10), 3441 (2022). https://doi.org/10.3390/ma15103441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. G. Binnig, C.F. Quate, C. Gerber, Atomic force microscope. Phys. Rev. Lett. 56(9), 930 (1986). https://doi.org/10.1103/PhysRevLett.56.930

    Article  CAS  PubMed  Google Scholar 

  261. Huang H. Electrochemical Application and AFM Characterization of Nanocomposites: Focus on Interphase Properties. KTH Royal Institute of Technology; 2017.

  262. R.A. Vaia, H.D. Wagner, Framework for nanocomposites. Mater Today. 7(11), 32–37 (2004). https://doi.org/10.1016/S1369-7021(04)00506-1

    Article  CAS  Google Scholar 

  263. H.D. Wagner, R.A. Vaia, Nanocomposites: issues at the interface. Mater Today. 7(11), 38–42 (2004). https://doi.org/10.1016/S1369-7021(04)00507-3

    Article  CAS  Google Scholar 

  264. Y. Zare, Development of Halpin-Tsai model for polymer nanocomposites assuming interphase properties and nanofiller size. Polym Test. 51, 69–73 (2016). https://doi.org/10.1016/j.polymertesting.2016.02.010

    Article  CAS  Google Scholar 

  265. Evgenievna Sukhanova T, A. Kuznetsova T, A. Lapitskaya V, I. Zubar T, A. Chizhik S, E. Vylegzhanina M, et al. Characterization of Multiblock (Segmented) Copolyurethane- Imides and Nanocomposites Based Thereof Using AFM, Nanotribology, and Nanoindentation Methods. Atomic-force Microscopy and Its Applications. 2019.

  266. T. Kuznetsova, S. Chizhik, A. Khudoley, Deformation structuring of aluminum films upon microindentation. J. Surf. Invest. 8(6), 1275–1285 (2014). https://doi.org/10.1134/S1027451014050115

    Article  CAS  Google Scholar 

  267. Sukhanova T, Kuznetsova TA VM, Svetlichnyi V, Zubar T, Chizhik S. Possibilities of using probe methods in the diagnostics of nanomodified thermoplastic elastomers. XII Intern Conf Methodological Aspects of Scanning Probe Microscopy; Minsk: Belaruskaya Navuka2016. p. 8–17.

  268. A.H. Barber, S.R. Cohen, H.D. Wagner, Measurement of carbon nanotube–polymer interfacial strength. Appl. Phys. Lett. 82(23), 4140–4142 (2003). https://doi.org/10.1063/1.1579568

    Article  CAS  Google Scholar 

  269. Chen J, Gao X, Xu D. Recent Advances in Characterization Techniques for the Interface in Carbon Nanotube-Reinforced Polymer Nanocomposites. Adv Mater Sci Eng. 2019;2019. doi: https://doi.org/10.1155/2019/5268267.

  270. M.C. Strus, C.I. Cano, R.B. Pipes, C.V. Nguyen, A. Raman, Interfacial energy between carbon nanotubes and polymers measured from nanoscale peel tests in the atomic force microscope. Compos. Sci. Technol. 69(10), 1580–1586 (2009). https://doi.org/10.1016/j.compscitech.2009.02.026

    Article  CAS  Google Scholar 

  271. Y. Ganesan, C. Peng, Y. Lu, P.E. Loya, P. Moloney, E. Barrera et al., Interface toughness of carbon nanotube reinforced epoxy composites. ACS Appl. Mater. Interfaces. 3(2), 129–134 (2011). https://doi.org/10.1021/am1011047

    Article  CAS  PubMed  Google Scholar 

  272. A.H. Barber, S.R. Cohen, A. Eitan, L.S. Schadler, H.D. Wagner, Fracture transitions at a carbon-nanotube/polymer interface. Adv Mater. 18(1), 83–87 (2006). https://doi.org/10.1002/adma.200501033

    Article  CAS  Google Scholar 

  273. S.-Y. Fu, Z.-K. Chen, S. Hong, C.C. Han, The reduction of carbon nanotube (CNT) length during the manufacture of CNT/polymer composites and a method to simultaneously determine the resulting CNT and interfacial strengths. Carbon 47(14), 3192–3200 (2009). https://doi.org/10.1016/j.carbon.2009.07.028

    Article  CAS  Google Scholar 

  274. Y.-N. Liu, M. Li, Y. Gu, X. Zhang, J. Zhao, Q. Li et al., The interfacial strength and fracture characteristics of ethanol and polymer modified carbon nanotube fibers in their epoxy composites. Carbon 52, 550–558 (2013). https://doi.org/10.1016/j.carbon.2012.10.011

    Article  CAS  Google Scholar 

  275. T. Tsuda, T. Ogasawara, F. Deng, N. Takeda, Direct measurements of interfacial shear strength of multi-walled carbon nanotube/PEEK composite using a nano-pullout method. Compos. Sci. Technol. 71(10), 1295–1300 (2011). https://doi.org/10.1016/j.compscitech.2011.04.014

    Article  CAS  Google Scholar 

  276. M. Manoharan, A. Sharma, A. Desai, M. Haque, C. Bakis, K. Wang, The interfacial strength of carbon nanofiber epoxy composite using single fiber pullout experiments. Nanotechnology 20(29), 295701 (2009). https://doi.org/10.1088/0957-4484/20/29/295701

    Article  CAS  PubMed  Google Scholar 

  277. Last JA, Russell P, Nealey PF, Murphy CJ. The applications of atomic force microscopy to vision science. Invest Ophthalmol Visual Sci. 2010;51(12):6083–94.

  278. M. Liu, Y. Zhang, C. Wu, S. Xiong, C. Zhou, Chitosan/halloysite nanotubes bionanocomposites: structure, mechanical properties and biocompatibility. Int. J. Biol. Macromol. 51(4), 566–575 (2012). https://doi.org/10.1016/j.ijbiomac.2012.06.022

    Article  CAS  PubMed  Google Scholar 

  279. Z.W. Abdullah, Y. Dong, N. Han, S. Liu, Water and gas barrier properties of polyvinyl alcohol (PVA)/starch (ST)/glycerol (GL)/halloysite nanotube (HNT) bionanocomposite films: Experimental characterisation and modelling approach. Compos. B Eng. 174, 107033 (2019). https://doi.org/10.1016/j.compositesb.2019.107033

    Article  CAS  Google Scholar 

  280. S. Kouser, A. Prabhu, K. Prashantha, G. Nagaraja, J.N. D’souza, K.M. Navada et al., Modified halloysite nanotubes with Chitosan incorporated PVA/PVP bionanocomposite films: thermal, mechanical properties and biocompatibility for tissue engineering. Colloids Surf. Physicochem. Eng. Aspects. 634, 127941 (2022). https://doi.org/10.1016/j.colsurfa.2021.127941

    Article  CAS  Google Scholar 

  281. M. Liu, L. Dai, H. Shi, S. Xiong, C. Zhou, In vitro evaluation of alginate/halloysite nanotube composite scaffolds for tissue engineering. Mater. Sci. Eng. C 49, 700–712 (2015). https://doi.org/10.1016/j.msec.2015.01.037

    Article  CAS  Google Scholar 

  282. R. Umetsu, J. Kumaki, Fabrication of a polymer molecularly flat substrate by thermal nanoimprinting and AFM observation of polymer chains deposited on it. Macromolecules 52(17), 6555–6565 (2019). https://doi.org/10.1021/acs.macromol.9b01280

    Article  CAS  Google Scholar 

  283. N. Kamal, S. Ahzi, V. Kochkodan, Polysulfone/halloysite composite membranes with low fouling properties and enhanced compaction resistance. Appl. Clay Sci. 199, 105873 (2020). https://doi.org/10.1016/j.clay.2020.105873

    Article  CAS  Google Scholar 

  284. S. Batasheva, M. Kryuchkova, R. Fakhrullin, G. Cavallaro, G. Lazzara, F. Akhatova et al., Facile fabrication of natural polyelectrolyte-nanoclay composites: halloysite nanotubes, nucleotides and DNA study. Molecules 25(15), 3557 (2020). https://doi.org/10.3390/molecules25153557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  285. R.S. Das, Y. Agrawal, Raman spectroscopy: recent advancements, techniques and applications. Vib. Spectrosc. 57(2), 163–176 (2011). https://doi.org/10.1016/j.vibspec.2011.08.003

    Article  CAS  Google Scholar 

  286. R. Scipioni, D. Gazzoli, F. Teocoli, O. Palumbo, A. Paolone, N. Ibris et al., Preparation and characterization of nanocomposite polymer membranes containing functionalized SnO2 additives. Membranes 4(1), 123–142 (2014). https://doi.org/10.3390/membranes4010123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. J.C. Fernandes, V. Mareau, L. Gonon, AFM-Raman colocalization setup: advanced characterization technique for polymers. Int. J. Polym. Anal. Charact. 23(2), 113–119 (2018). https://doi.org/10.1080/1023666X.2017.1391740

    Article  CAS  Google Scholar 

  288. M. Jin, F. Lu, M.A. Belkin, High-sensitivity infrared vibrational nanospectroscopy in water. Light. 6(7), 17096 (2017). https://doi.org/10.1038/lsa.2017.96

    Article  CAS  Google Scholar 

  289. T. Hassenkam, M. Andersson, K. Dalby, D. Mackenzie, M. Rosing, Elements of Eoarchean life trapped in mineral inclusions. Nature 548(7665), 78–81 (2017). https://doi.org/10.1038/nature23261

    Article  CAS  PubMed  Google Scholar 

  290. B.T. O’callahan, A.C. Jones, J. Hyung Park, D.H. Cobden, J.M. Atkin, M.B. Raschke, Inhomogeneity of the ultrafast insulator-to-metal transition dynamics of VO2. Nat. Commun. 6(1), 1–8 (2015). https://doi.org/10.1038/ncomms7849

    Article  CAS  Google Scholar 

  291. N. Qin, S. Zhang, J. Jiang, S.G. Corder, Z. Qian, Z. Zhou et al., Nanoscale probing of electron-regulated structural transitions in silk proteins by near-field IR imaging and nano-spectroscopy. Nat. Commun. 7(1), 1–8 (2016). https://doi.org/10.1038/ncomms13079

    Article  CAS  Google Scholar 

  292. F. Ruggeri, G. Longo, S. Faggiano, E. Lipiec, A. Pastore, G. Dietler, Infrared nanospectroscopy characterization of oligomeric and fibrillar aggregates during amyloid formation. Nat. Commun. 6(1), 1–9 (2015). https://doi.org/10.1038/ncomms8831

    Article  CAS  Google Scholar 

  293. J. Yang, J. Hatcherian, P.C. Hackley, A.E. Pomerantz, Nanoscale geochemical and geomechanical characterization of organic matter in shale. Nat. Commun. 8(1), 1–9 (2017). https://doi.org/10.1038/s41467-017-02254-0

    Article  CAS  Google Scholar 

  294. S. Ghosh, N.A. Kouamé, L. Ramos, S. Remita, A. Dazzi, A. Deniset-Besseau et al., Conducting polymer nanostructures for photocatalysis under visible light. Nat. Mater. 14(5), 505–511 (2015). https://doi.org/10.1038/nmat4220

    Article  CAS  PubMed  Google Scholar 

  295. Y. Liu, L. Collins, R. Proksch, S. Kim, B.R. Watson, B. Doughty et al., Chemical nature of ferroelastic twin domains in CH3NH3PbI3 perovskite. Nat. Mater. 17(11), 1013–1019 (2018). https://doi.org/10.1038/s41563-018-0152-z

    Article  CAS  PubMed  Google Scholar 

  296. F. Lu, M. Jin, M.A. Belkin, Tip-enhanced infrared nanospectroscopy via molecular expansion force detection. Nat. Photon. 8(4), 307–312 (2014). https://doi.org/10.1038/nphoton.2013.373

    Article  CAS  Google Scholar 

  297. L.B. Capeletti, J.H. Zimnoch, Fourier transform infrared and Raman characterization of silica-based materials Mol Spectrosc. Curr. Res. Chem. Biol. Sci. Appl. 10, 11 (2016). https://doi.org/10.5772/64477

    Article  CAS  Google Scholar 

  298. Alexander R (2008) Advantages of Raman spectroscopy when analyzing materials through glass or polymer containers and in aqueous solution. PerkinElmer Inc.

Download references

Funding

No funding was received for this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to manuscript.

Corresponding author

Correspondence to Maryam Batool.

Ethics declarations

Conflict of interest

There are no conflicts of interest to disclose this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batool, M., Haider, M.N. & Javed, T. Applications of Spectroscopic Techniques for Characterization of Polymer Nanocomposite: A Review. J Inorg Organomet Polym 32, 4478–4503 (2022). https://doi.org/10.1007/s10904-022-02461-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02461-3

Keywords