Abstract
Through past eras, spectroscopic techniques found numerous applications i.e., from biological applications to measurement of chemical composition and characterization of numerous materials such as polymers, nanocomposites etc. Nanocomposites, in addition to radiation shielding materials are developing and growing materials having numerous uses. For study of distinctive characteristics, characterization, and development of new materials employing polymer nanocomposites, numerous characterization practices are accessible and are in use nowadays. The prime objective of current review is to summarize the knowledge of existing characterization practices and to explore the applications of fluorescence, UV–Vis spectroscopy, solid-state nuclear magnetic resonance (NMR), wide angle X-ray diffraction (WXRD), small angel X-ray scattering (SAXS), and infrared in addition to Raman technique towards characterization of metal oxide composites, polymers, fillers, composites besides nanocomposites. Fluorescence techniques find limitations in providing comprehensive examination of materials. For information regarding material size, aggregation phase, as well as refractive index, UV–Vis spectroscopy was employed. Solid-state NMR spectroscopy give information about silanol hydroxyl groups present at exterior of silica as well as their interactions with polymer and polymer-filler interfacial connections. WXRD provide information on crystal structure, composition, crystalline grain size of materials while SAXS provide information about size of particle, and its distribution. To characterize different types of functional groups in materials, infrared spectroscopy was employed. Raman spectroscopy finds wide-ranging applications for analysis of materials. The novelty of this review is that until yet, very few review papers have been published that concisely describe all above mentioned techniques along with their applications in a very simple and effective means.






















Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
J. Jancar, J. Douglas, F.W. Starr, S. Kumar, P. Cassagnau, A. Lesser et al., Current issues in research on structure–property relationships in polymer nanocomposites. Polymer 51(15), 3321–3343 (2010). https://doi.org/10.1016/j.polymer.2010.04.074
L. Bokobza, Mechanical and electrical properties of elastomer nanocomposites based on different carbon nanomaterials. J. Carbon Res. 3(2), 10 (2017). https://doi.org/10.3390/c3020010
L. Bokobza, The reinforcement of elastomeric networks by fillers. Macromol. Mater. Eng. 289(7), 607–621 (2004). https://doi.org/10.1002/mame.200400034
S.-B. Wang, J. Mark, In-situ precipitation of reinforcing titania fillers. Polym Bull. 17(3), 271–277 (1987). https://doi.org/10.1007/BF00285360
D. McCarthy, J. Mark, D. Schaefer, Synthesis, structure, and properties of hybrid organic–inorganic composites based on polysiloxanes I: Poly (dimethylsiloxane) elastomers containing silica. J. Polym. Sci. Part B 36(7), 1167–1189 (1998). https://doi.org/10.1002/(SICI)1099-0488(199805)36:7%3C1167::AID-POLB7%3E3.0.CO;2-R
Q.W. Yuan, J.E. Mark, Reinforcement of poly (dimethylsiloxane) networks by blended and in-situgenerated silica fillers having various sizes, size distributions, and modified surfaces. Macromol. Chem. Phys. 200(1), 206–220 (1999). https://doi.org/10.1002/(SICI)1521-3935(19990101)200:1%3C206::AID-MACP206%3E3.0.CO;2-S
P. Hajji, L. David, J. Gerard, J. Pascault, G. Vigier, Synthesis, structure, and morphology of polymer–silica hybrid nanocomposites based on hydroxyethyl methacrylate. J Polym. Sci. Part B 37(22), 3172–3187 (1999). https://doi.org/10.1002/(SICI)1099-0488(19991115)37:22%3C3172::AID-POLB2%3E3.0.CO;2-R
L. Matĕjka, O. Dukh, Kolařı́k J, Reinforcement of crosslinked rubbery epoxies by in-situ formed silica. Polymer 41(4), 1449–1459 (2000). https://doi.org/10.1016/S0032-3861(99)00317-1
Matějka L, Dukh O. Organic‐inorganic hybrid networks. Macromolecular Symposia: Wiley Online Library; 2001. pp. 181–8.
L. Dewimille, B. Bresson, L. Bokobza, Synthesis, structure and morphology of poly (dimethylsiloxane) networks filled with in situ generated silica particles. Polymer 46(12), 4135–4143 (2005). https://doi.org/10.1016/j.polymer.2005.02.049
L. Bokobza, A. Diop, Reinforcement of poly (dimethylsiloxane) by sol-gel in situ generated silica and titania particles. Express Polym. Lett. 4(6), 355–363 (2010). https://doi.org/10.3144/expresspolymlett.2010.45
J. Wen, J.E. Mark, Precipitation of silica-titania mixed-oxide fillers into poly (dimethylsiloxane) networks. Rubber Chem. Technol. 67(5), 806–819 (1994). https://doi.org/10.5254/1.3538712
J. Breiner, J. Mark, Preparation, structure, growth mechanisms and properties of siloxane composites containing silica, titania or mixed silica–titania phases. Polymer 39(22), 5483–5493 (1998). https://doi.org/10.1016/S0032-3861%2897%2910276-2
E.P. Giannelis, Polymer layered silicate nanocomposites. Adv. Mater. 8(1), 29–35 (1996). https://doi.org/10.1002/adma.19960080104
R. Krishnamoorti, R.A. Vaia, E.P. Giannelis, Structure and dynamics of polymer-layered silicate nanocomposites. Chem. Mater. 8(8), 1728–1734 (1996). https://doi.org/10.1021/cm960127g
M. Alexandre, P. Dubois, Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater. Sci. Eng. Rep. 28(1–2), 1–63 (2000). https://doi.org/10.1016/S0927-796X(00)00012-7
A. Okada, A. Usuki, Twenty years of polymer-clay nanocomposites. Macromol. Mater. Eng. 291(12), 1449–1476 (2006). https://doi.org/10.1002/mame.200600260
L. Bokobza, Spectroscopic techniques for the characterization of polymer nanocomposites: a review. Polymers 10(1), 7 (2018). https://doi.org/10.3390/polym10010007
L. Bokobza, M. Rahmani, C. Belin, J.L. Bruneel, N.E. El Bounia, Blends of carbon blacks and multiwall carbon nanotubes as reinforcing fillers for hydrocarbon rubbers. J. Polym. Sci. Part B 46(18), 1939–1951 (2008). https://doi.org/10.1002/polb.21529
M. Galimberti, M. Coombs, V. Cipolletti, P. Riccio, T. Riccò, S. Pandini et al., Enhancement of mechanical reinforcement due to hybrid filler networking promoted by an organoclay in hydrocarbon-based nanocomposites. Appl. Clay Sci. 65, 57–66 (2012). https://doi.org/10.1016/j.clay.2012.04.019
P.-C. Ma, N.A. Siddiqui, G. Marom, J.-K. Kim, Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos. Part A 41(10), 1345–1367 (2010). https://doi.org/10.1016/j.compositesa.2010.07.003
V.D. Punetha, S. Rana, H.J. Yoo, A. Chaurasia, J.T. McLeskey Jr., M.S. Ramasamy et al., Functionalization of carbon nanomaterials for advanced polymer nanocomposites: a comparison study between CNT and graphene. Prog. Polym. Sci. 67, 1–47 (2017). https://doi.org/10.1016/j.progpolymsci.2016.12.010
X. Zhang, L. Hou, P. Samorì, Coupling carbon nanomaterials with photochromic molecules for the generation of optically responsive materials. Nat. Commun. 7(1), 1–14 (2016). https://doi.org/10.1038/ncomms11118
V. Singh, D. Joung, L. Zhai, S. Das, S.I. Khondaker, S. Seal, Graphene based materials: past, present and future. Prog. Mater Sci. 56(8), 1178–1271 (2011). https://doi.org/10.1016/j.pmatsci.2011.03.003
L. Xu, L. Cheng, Graphite oxide under high pressure: a Raman spectroscopic study. J. Nanomater. (2013). https://doi.org/10.1155/2013/731875
H.J. Kim, S.-M. Lee, Y.-S. Oh, Y.-H. Yang, Y.S. Lim, D.H. Yoon et al., Unoxidized graphene/alumina nanocomposite: fracture-and wear-resistance effects of graphene on alumina matrix. Sci. Rep. 4(1), 1–10 (2014). https://doi.org/10.1038/srep05176
L. Bokobza, J.-L. Bruneel, M. Couzi, Raman spectra of carbon-based materials (from graphite to carbon black) and of some silicone composites. J. Carbon Res. 1(1), 77–94 (2015). https://doi.org/10.3390/c1010077
L.M. Viculis, J.J. Mack, O.M. Mayer, H.T. Hahn, R.B. Kaner, Intercalation and exfoliation routes to graphite nanoplatelets. J. Mater. Chem. 15(9), 974–978 (2005). https://doi.org/10.1039/B413029D
Y. Geng, S.J. Wang, J.-K. Kim, Preparation of graphite nanoplatelets and graphene sheets. J. Colloid Interface Sci. 336(2), 592–598 (2009). https://doi.org/10.1016/j.jcis.2009.04.005
T. Kuilla, S. Bhadra, D. Yao, N.H. Kim, S. Bose, J.H. Lee, Recent advances in graphene based polymer composites. Prog Polym Sci. 35(11), 1350–1375 (2010). https://doi.org/10.1016/j.progpolymsci.2010.07.005
B. Li, W.-H. Zhong, Review on polymer/graphite nanoplatelet nanocomposites. JMatS. 46(17), 5595–5614 (2011). https://doi.org/10.1007/s10853-011-5572-y
R. Sengupta, M. Bhattacharya, S. Bandyopadhyay, A.K. Bhowmick, A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym. Sci. 36(5), 638–670 (2011). https://doi.org/10.1016/j.progpolymsci.2010.11.003
M. Cai, D. Thorpe, D.H. Adamson, H.C. Schniepp, Methods of graphite exfoliation. J. Mater. Chem. 22(48), 24992–25002 (2012). https://doi.org/10.1039/C2JM34517J
D.G. Papageorgiou, I.A. Kinloch, R.J. Young, Graphene/elastomer nanocomposites. Carbon 95, 460–484 (2015). https://doi.org/10.1016/j.carbon.2015.08.055
A.M. Dimiev, G. Ceriotti, A. Metzger, N.D. Kim, J.M. Tour, Chemical mass production of graphene nanoplatelets in∼ 100% yield. ACS Nano 10(1), 274–279 (2016). https://doi.org/10.1021/acsnano.5b06840
M. Al-Buriahi, C. Sriwunkum, H. Arslan, B.T. Tonguc, M.A. Bourham, Investigation of barium borate glasses for radiation shielding applications. Appl. Phys. A 126(1), 1–9 (2020). https://doi.org/10.1007/s00339-019-3254-9
A. Saeed, F. Abolaban, Risk estimation of the low-dose fast neutrons on the molecular structure of the lipids of peripheral blood mononuclear cells. Biochem. Biophys. Res. Commun. 533(4), 1048–1053 (2020). https://doi.org/10.1016/j.bbrc.2020.09.116
A. Saeed, G.A. Raouf, S.S. Nafee, S.A. Shaheen, Y. Al-Hadeethi, Effects of very low dose fast neutrons on cell membrane and secondary protein structure in rat erythrocytes. PLoS ONE 10(10), e0139854 (2015). https://doi.org/10.1371/journal.pone.0139854
A.A. El-Soad, M. Sayyed, K. Mahmoud, E. Şakar, E. Kovaleva, Simulation studies for gamma ray shielding properties of Halloysite nanotubes using MCNP-5 code. Appl. Radiat. Isot. 154, 108882 (2019). https://doi.org/10.1016/j.apradiso.2019.108882
Y. Rammah, K. Mahmoud, M. Sayyed, F. El-Agawany, R. El-Mallawany, Novel vanadyl lead-phosphate glasses: P2O5–PbO–ZnONa2O–V2O5: synthesis, optical, physical and gamma photon attenuation properties. J. Non-Cryst. Solids 534, 119944 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.119944
A. Stewart, G.W. Kneale, Radiation dose effects in relation to obstetric x-rays and childhood cancers. Lancet 295(7658), 1185–1188 (1970). https://doi.org/10.1016/S0140-6736(70)91782-4
K. Mahmoud, M. Sayyed, O. Tashlykov, Gamma ray shielding characteristics and exposure buildup factor for some natural rocks using MCNP-5 code. Nucl. Eng. Technol. 51(7), 1835–1841 (2019). https://doi.org/10.1016/j.net.2019.05.013
V. Singh, S. Shirmardi, M. Medhat, N. Badiger, Determination of mass attenuation coefficient for some polymers using Monte Carlo simulation. Vacuu. 119, 284–288 (2015). https://doi.org/10.1016/j.vacuum.2015.06.006
S.H. Hosseini, S. Noushin Ezzati, M. Askari, Synthesis, characterization and X-ray shielding properties of polypyrrole/lead nanocomposites. Polym. Adv. Technol. 26(6), 561–568 (2015). https://doi.org/10.1002/pat.3486
Y. Elmahroug, B. Tellili, C. Souga, Determination of shielding parameters for different types of resins. Ann. Nucl. Energy. 63, 619–623 (2014). https://doi.org/10.1016/j.anucene.2013.09.007
C.V. More, Z. Alsayed, M. Badawi, A. Thabet, P.P. Pawar, Polymeric composite materials for radiation shielding: a review. Environ Chem Lett. 19(3), 2057–2090 (2021). https://doi.org/10.1007/s10311-021-01189-9
G. Susoy, E.A. Guclu, O. Kilicoglu, M. Kamislioglu, M. Al-Buriahi, M. Abuzaid et al., The impact of Cr2O3 additive on nuclear radiation shielding properties of LiF–SrO–B2O3 glass system. Mater. Chem. Phys. 242, 122481 (2020). https://doi.org/10.1016/j.matchemphys.2019.122481
M. Al-Buriahi, E.M. Bakhsh, B. Tonguc, S.B. Khan, Mechanical and radiation shielding properties of tellurite glasses doped with ZnO and NiO. Ceram Int. 46(11), 19078–19083 (2020). https://doi.org/10.1016/j.ceramint.2020.04.240
H. Tekin, L. Kassab, S.A. Issa, M. Martins, L. Bontempo, G.R. da Silva Mattos, Newly developed BGO glasses: synthesis, optical and nuclear radiation shielding properties. Ceram Int. 46(8), 11861–11873 (2020). https://doi.org/10.1016/j.ceramint.2020.01.221
M.S. Al-Buriahi, C. Eke, S. Alomairy, A. Yildirim, H. Alsaeedy, C. Sriwunkum, Radiation attenuation properties of some commercial polymers for advanced shielding applications at low energies. Polym. Adv. Technol. 32(6), 2386–2396 (2021). https://doi.org/10.1002/pat.5267
M. Al-Buriahi, V. Singh, Comparison of shielding properties of various marble concretes using GEANT4 simulation and experimental data. J. Aust. Ceram. Soc. 56(3), 1127–1133 (2020). https://doi.org/10.1007/s41779-020-00457-1
I. Olarinoye, S. Alomairy, C. Sriwunkum, M.S. Al-Buriahi, Effect of Ag2O/V2O5 substitution on the radiation shielding ability of tellurite glass system via XCOM approach and FLUKA simulations. Phys. Scr. 96(6), 065308 (2021). https://doi.org/10.1088/1402-4896/abf26a
M. Kaçal, F. Akman, M. Sayyed, Evaluation of gamma-ray and neutron attenuation properties of some polymers. Nucl. Eng. Technol. 51(3), 818–824 (2019). https://doi.org/10.1016/j.net.2018.11.011
O. Kilicoglu, H. Tekin, Bioactive glasses and direct effect of increased K2O additive for nuclear shielding performance: a comparative investigation. Ceram Int. 46(2), 1323–1333 (2020). https://doi.org/10.1016/j.ceramint.2019.09.095
M. Al-Buriahi, Y. Alajerami, A. Abouhaswa, A. Alalawi, T. Nutaro, B. Tonguc, Effect of chromium oxide on the physical, optical, and radiation shielding properties of lead sodium borate glasses. J. Non-Cryst. Solids 544, 120171 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120171
M. Al-Buriahi, H. Hegazy, F. Alresheedi, H. Somaily, C. Sriwunkum, I. Olarinoye, Effect of Sb2O3 addition on radiation attenuation properties of tellurite glasses containing V2O5 and Nb2O5. Appl Phys A. 127(2), 1–12 (2021). https://doi.org/10.1007/s00339-020-04265-z
H. Hegazy, M. Al-Buriahi, F. Alresheedi, S. Alraddadi, H. Arslan, H. Algarni, The effects of TeO2 on polarizability, optical transmission, and photon/neutron attenuation properties of boro-zinc-tellurite glasses. J. Inorg. Organomet. Polym Mater. 31(6), 2331–2338 (2021). https://doi.org/10.1007/s10904-021-01933-2
M.S. Al-Buriahi, H. Somaily, A. Alalawi, S. Alraddadi, Polarizability, optical basicity, and photon attenuation properties of Ag2O–MoO3–V2O5–TeO2 glasses: the role of silver oxide. J. Inorg. Organomet. Polym Mater. 31(3), 1047–1056 (2021). https://doi.org/10.1007/s10904-020-01750-z
J.S. Alzahrani, M.A. Alothman, C. Eke, H. Al-Ghamdi, D.A. Aloraini, M. Al-Buriahi, Simulating the radiation shielding properties of TeO2–Na2O–TiO glass system using PHITS Monte Carlo code. Comput. Mater. Sci. 196, 110566 (2021). https://doi.org/10.1016/j.commatsci.2021.110566
S. Xu, M. Bourham, A. Rabiei, A novel ultra-light structure for radiation shielding. Mater. Des. 31(4), 2140–2146 (2010). https://doi.org/10.1016/j.matdes.2009.11.011
B. Alshahrani, I. Olarinoye, C. Mutuwong, C. Sriwunkum, H. Yakout, H. Tekin et al., Amorphous alloys with high Fe content for radiation shielding applications. Radiat. Phys. Chem. 183, 109386 (2021). https://doi.org/10.1016/j.radphyschem.2021.109386
A. Saeed, S. Alomairy, C. Sriwunkum, M. Al-Buriahi, Neutron and charged particle attenuation properties of volcanic rocks. Radiat. Phys. Chem. 184, 109454 (2021). https://doi.org/10.1016/j.radphyschem.2021.109454
Y. Feng, X. Sun, L. Sun, W. Cai, J. Li, B. Hou, Electronic structure and X-photon absorption ability of BaPbO3. Chin. J. Inorg. Chem. 18(4), 342–346 (2002)
L. Liu, L. He, C. Yang, W. Zhang, R.G. Jin, L.Q. Zhang, In situ reaction and radiation protection properties of Gd (AA) 3/NR composites. Macromol. Rapid Commun. 25(12), 1197–1202 (2004). https://doi.org/10.1002/marc.200400077
I. Boukhris, I. Kebaili, M. Al-Buriahi, A. Alalawi, A. Abouhaswa, B. Tonguc, Photon and electron attenuation parameters of phosphate and borate bioactive glasses by using Geant4 simulations. Ceram Int. 46(15), 24435–24442 (2020). https://doi.org/10.1016/j.ceramint.2020.06.226
M. Al-Buriahi, S. Alomairy, C. Mutuwong, Effects of MgO addition on the radiation attenuation properties of 45S5 bioglass system at the energies of medical interest: an in silico study. J. Aust. Ceram. Soc. 57(4), 1107–1115 (2021). https://doi.org/10.1007/s41779-021-00605-1
S. Nouh, B. Alsobhi, A.A. Elfadl, A. Massoud, Effect of gamma irradiation on the structure, optical and thermal properties of PC–PBT/NiO polymer nanocomposites films. J. Inorg. Organomet. Polym Mater. 27(6), 1851–1860 (2017). https://doi.org/10.1007/s10904-017-0650-5
L. Schadler, L. Brinson, W. Sawyer, Polymer nanocomposites: a small part of the story. JOM. 59(3), 53–60 (2007). https://doi.org/10.1007/s11837-007-0040-5
N.-M. Park, T.-S. Kim, S.-J. Park, Band gap engineering of amorphous silicon quantum dots for light-emitting diodes. Appl. Phys. Lett. 78(17), 2575–2577 (2001). https://doi.org/10.1063/1.1367277
A. Bueche, Filler reinforcement of silicone rubber. J. Polym. Sci. 25(109), 139–149 (1957). https://doi.org/10.1002/pol.1957.1202510902
E. Barna, B. Bommer, J. Kürsteiner, A. Vital, O.V. Trzebiatowski, W. Koch et al., Innovative, scratch proof nanocomposites for clear coatings. Compos. Part A 36(4), 473–480 (2005)
M.H. Wichmann, J. Sumfleth, F.H. Gojny, M. Quaresimin, B. Fiedler, K. Schulte, Glass-fibre-reinforced composites with enhanced mechanical and electrical properties–benefits and limitations of a nanoparticle modified matrix. Eng. Fract. Mech. 73(16), 2346–2359 (2006). https://doi.org/10.1016/j.engfracmech.2006.05.015
T. Liu, I.Y. Phang, L. Shen, S.Y. Chow, W.-D. Zhang, Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites. Macromolecules 37(19), 7214–7222 (2004). https://doi.org/10.1021/ma049132t
Z. Xia, L. Riester, W. Curtin, H. Li, B. Sheldon, J. Liang et al., Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites. Acta Mater. 52(4), 931–944 (2004). https://doi.org/10.1016/j.actamat.2003.10.050
B.J. Ash, R.W. Siegel, L.S. Schadler, Mechanical behavior of alumina/poly (methyl methacrylate) nanocomposites. Macromolecules 37(4), 1358–1369 (2004). https://doi.org/10.1021/ma0354400
W. Naous, X.Y. Yu, Q.X. Zhang, K. Naito, Y. Kagawa, Morphology, tensile properties, and fracture toughness of epoxy/Al2O3 nanocomposites. J. Polym. Sci. Part B 44(10), 1466–1473 (2006). https://doi.org/10.1002/polb.20800
D. Ma, R.W. Siegel, J.-I. Hong, L.S. Schadler, E. Mårtensson, C. Önneby, Influence of nanoparticle surfaces on the electrical breakdown strength of nanoparticle-filled low-density polyethylene. J. Mater. Res. 19(3), 857–863 (2004). https://doi.org/10.1557/jmr.2004.19.3.857
L. Bokobza, Investigation of local dynamics of polymer chains in the bulk by the excimer fluorescence technique. Prog Polym Sci. 15(3), 337–360 (1990). https://doi.org/10.1016/0079-6700(90)90001-H
G.A. George, Characterization of solid polymers by luminescence techniques. Pure Appl. Chem. 57(7), 945–954 (1985). https://doi.org/10.1351/pac198557070945
M. Zammarano, P.H. Maupin, L.-P. Sung, J.W. Gilman, E.D. McCarthy, Y.S. Kim et al., Revealing the interface in polymer nanocomposites. ACS Nano 5(4), 3391–3399 (2011). https://doi.org/10.1021/nn102951n
P. Rittigstein, J.M. Torkelson, Polymer–nanoparticle interfacial interactions in polymer nanocomposites: confinement effects on glass transition temperature and suppression of physical aging. J. Polym. Sci Part B 44(20), 2935–2943 (2006). https://doi.org/10.1002/polb.20925
S. Venkatachalam, Ultraviolet and visible spectroscopy studies of nanofillers and their polymer nanocomposites. Spectrosc Polym. Nanocompos. (2016). https://doi.org/10.1016/B978-0-323-40183-8.00006-9
Quevedo AC, Guggenheim E, Briffa SM, Adams J, Lofts S, Kwak M, et al. UV-Vis spectroscopic characterization of nanomaterials in aqueous media. 2021. https://www.um.edu.mt/library/oar/handle/123456789/98184.
J.-F. Zhu, Y.-J. Zhu, Microwave-assisted one-step synthesis of polyacrylamide− metal (M= Ag, Pt, Cu) nanocomposites in ethylene glycol. J. Phys. Chem. B 110(17), 8593–8597 (2006). https://doi.org/10.1021/jp060488b
S. Mukherjee, S. Das, S. Nuthi, C.R. Patra, Biocompatible nickel-prussian blue@ silver nanocomposites show potent antibacterial activities. Future Sci. OA 3(4), 233 (2017). https://doi.org/10.4155/fsoa-2017-0048
I. Saini, J. Rozra, N. Chandak, S. Aggarwal, P.K. Sharma, A. Sharma, Tailoring of electrical, optical and structural properties of PVA by addition of Ag nanoparticles. Mater. Chem. Phys. 139(2–3), 802–810 (2013). https://doi.org/10.1016/j.matchemphys.2013.02.035
A. Mironenko, E. Modin, A. Sergeev, S. Voznesenskiy, S. Bratskaya, Fabrication and optical properties of chitosan/Ag nanoparticles thin film composites. Chem. Eng. J. 244, 457–463 (2014). https://doi.org/10.1016/j.cej.2014.01.094
H. Huang, Q. Yuan, X. Yang, Preparation and characterization of metal–chitosan nanocomposites. Colloids Surf. B 39(1–2), 31–37 (2004). https://doi.org/10.1016/j.colsurfb.2004.08.014
I. Gorelikov, L.M. Field, E. Kumacheva, Hybrid microgels photoresponsive in the near-infrared spectral range. J. Am. Chem. Soc. 126(49), 15938–15939 (2004). https://doi.org/10.1021/ja0448869
R. Contreras-Cáceres, I. Pastoriza-Santos, R.A. Alvarez-Puebla, J. Pérez-Juste, A. Fernández-Barbero, L.M. Liz-Marzán, Growing Au/Ag nanoparticles within microgel colloids for improved surface-enhanced Raman scattering detection. Chem. A 16(31), 9462–9467 (2010). https://doi.org/10.1002/chem.201001261
D. Suzuki, H. Kawaguchi, Modification of gold nanoparticle composite nanostructures using thermosensitive core− shell particles as a template. Langmuir 21(18), 8175–8179 (2005). https://doi.org/10.1021/la0504356
R. Contreras-Cáceres, A. Sánchez-Iglesias, M. Karg, I. Pastoriza-Santos, J. Pérez-Juste, J. Pacifico et al., Encapsulation and growth of gold nanoparticles in thermoresponsive microgels. Adv Mater. 20(9), 1666–1670 (2008). https://doi.org/10.1002/adma.200800064
Z.H. Farooqi, A. Ijaz, R. Begum, K. Naseem, M. Usman, M. Ajmal et al., Synthesis and characterization of inorganic–organic polymer microgels for catalytic reduction of 4-nitroaniline in aqueous medium. Polym. Compos. 39(3), 645–653 (2018). https://doi.org/10.1002/pc.23980
J. Zhang, S. Xu, E. Kumacheva, Polymer microgels: reactors for semiconductor, metal, and magnetic nanoparticles. J. Am. Chem. Soc. 126(25), 7908–7914 (2004). https://doi.org/10.1021/ja031523k
I. Pastoriza-Santos, J. Pérez-Juste, L.M. Liz-Marzán, Silica-coating and hydrophobation of CTAB-stabilized gold nanorods. Chem Mater. 18(10), 2465–2467 (2006). https://doi.org/10.1021/cm060293g
Y. Tang, T. Wu, B. Hu, Q. Yang, L. Liu, B. Yu et al., Synthesis of thermo-and pH-responsive Ag nanoparticle-embedded hybrid microgels and their catalytic activity in methylene blue reduction. Mater. Chem. Phys. 149, 460–466 (2015). https://doi.org/10.1016/j.matchemphys.2014.10.045
M. Ajmal, Z.H. Farooqi, M. Siddiq, Silver nanoparticles containing hybrid polymer microgels with tunable surface plasmon resonance and catalytic activity. Korean J. Chem. Eng. 30(11), 2030–2036 (2013). https://doi.org/10.1007/s11814-013-0150-4
S. ur Rehman, A.R. Khan, A. Shah, A. Badshah, M. Siddiq, Preparation and characterization of poly (N-isoproylacrylamide-co-dimethylaminoethyl methacrylate) microgels and their composites of gold nanoparticles. Colloids Surf. Physicochem. Eng. Aspects. 520, 826–833 (2017). https://doi.org/10.1016/j.colsurfa.2017.02.060
L.A. Shah, M. Sayed, M. Fayaz, I. Bibi, M. Nawaz, M. Siddiq, Ag-loaded thermo-sensitive composite microgels for enhanced catalytic reduction of methylene blue. Nanotechnol. Environ. Eng. 2(1), 1–7 (2017). https://doi.org/10.1007/s41204-017-0026-7
Y. Lu, S. Proch, M. Schrinner, M. Drechsler, R. Kempe, M. Ballauff, Thermosensitive core-shell microgel as a “nanoreactor” for catalytic active metal nanoparticles. J. Mater. Chem. 19(23), 3955–3961 (2009). https://doi.org/10.1039/B822673N
M. Ahmad, S. Nadeem, S.U. Hassan, S. Jamil, M. Javed, A. Mohyuddin et al., UV/VIS absorption properties of metal sulphate polymer nanocomposites. Digest J. Nanomater. Biostruct. (DJNB) 16(4), 15 (2021)
S.A. Hussen, Structural and optical characterization of pure and SnZrO3 doped PS based polymer nanocomposite. Mater. Res. Express 7(10), 105302 (2020). https://doi.org/10.1088/2053-1591/abbb53
L.A. Shah, A. Haleem, M. Sayed, M. Siddiq, Synthesis of sensitive hybrid polymer microgels for catalytic reduction of organic pollutants. J. Environ. Chem. Eng. 4(3), 3492–3497 (2016). https://doi.org/10.1016/j.jece.2016.07.029
Y.-Y. Liu, X.-Y. Liu, J.-M. Yang, D.-L. Lin, X. Chen, L.-S. Zha, Investigation of Ag nanoparticles loading temperature responsive hybrid microgels and their temperature controlled catalytic activity. Colloids Surf. Physicochem. Eng. Aspects. 393, 105–110 (2012). https://doi.org/10.1016/j.colsurfa.2011.11.007
Z.H. Farooqi, S.R. Khan, T. Hussain, R. Begum, K. Ejaz, S. Majeed et al., Effect of crosslinker feed content on catalaytic activity of silver nanoparticles fabricated in multiresponsive microgels. Korean J. Chem. Eng. 31(9), 1674–1680 (2014). https://doi.org/10.1007/s11814-014-0117-0
R. Begum, Z.H. Farooqi, E. Ahmed, K. Naseem, S. Ashraf, A. Sharif et al., Catalytic reduction of 4-nitrophenol using silver nanoparticles-engineered poly (N-isopropylacrylamide-co-acrylamide) hybrid microgels. Appl. Organomet. Chem. 31(2), e3563 (2017). https://doi.org/10.1002/aoc.3563
Okitsu K. UV-vis spectroscopy for characterization of metal nanoparticles formed from reduction of metal ions during ultrasonic irradiation. UV-VIS and Photoluminescence Spectroscopy for Nanomaterials Characterization. Springer; 2013. p. 151–77.
Böhme U, Scheler U. Interfaces in polymer nanocomposites–An NMR study. AIP Conf Proc: AIP Publishing LLC; 2016. p. 090009
F.A. Bovey, P.A. Mirau, NMR of Polymers (Academic Press, San Diego, 1996)
K. Schmidt-Rohr, H.W. Spiess, Multidimensional Solid-State NMR and Polymers (Elsevier, Amsterdam, 2012)
P.A. Mirau, S.A. Heffner, M. Schilling, Fast magic-angle spinning proton NMR studies of polymers at surfaces and interfaces. Solid State Nucl. Magn. Reson. 16(1–2), 47–53 (2000). https://doi.org/10.1016/S0926-2040(00)00053-9
W. Li, L. Hou, Z. Chen, An NMR investigation of phase structure and chain dynamics in the polyethylene/montmorillonite nanocomposites. J. Nanomater. (2013). https://doi.org/10.1155/2013/937210
T. Rodrigues, M.I. Tavares, I. Soares, A. Moreira, A. Ferreira, The use of solid state NMR to characterize high density polyethylene/organoclay nanocomposites. Chemis. Chem. Technol. 2009. http://ena.lp.edu.ua:8080/handle/ntb/7213.
C.J. Brinker, G.W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing (Academic Press, Cambridge, 2013)
D.R. Uhlmann, D.R. Ulrich, Ultrastructure Processing of Advanced Materials (Arizona Univ Tucson, Tucson, 1992)
Mark JE. Hybrid organic-inorganic composites. ACS Symp Ser 1995.
L.C. Klein, Sol-Gel Technology for Thin Films, Fibers, Preforms, Electronics and Specialty Shapes (William Andrew, Norwich, 1988)
P. Judeinstein, C. Sanchez, Hybrid organic–inorganic materials: a land of multidisciplinarity. J. Mater. Chem. 6(4), 511–525 (1996). https://doi.org/10.1039/JM9960600511
C. Sanchez, F. Ribot, B. Lebeau, Molecular design of hybrid organic-inorganic nanocomposites synthesized via sol-gel chemistry. J. Mater. Chem. 9(1), 35–44 (1999). https://doi.org/10.1039/A805538F
P. Judeinstein, J. Livage, A. Zarudiansky, R. Rose, An, “all gel” electrochromic device. Solid State Ion. 28, 1722–1725 (1988). https://doi.org/10.1016/0167-2738(88)90449-3
B. Orel, U. Opara Krašovec, U. Lavrenčič Štangar, P. Judeinstein, All sol-gel electrochromic devices with li+ ionic conductor, WO3 electrochromic films and SnO2 counter-electrode films. J. Sol-Gel. Sci. Technol. 11(1), 87–104 (1998). https://doi.org/10.1023/A:1008697101623
P. Judeinstein, M. Brik, J. Bayle, J. Courtieu, J. Rault, Mobility range in hybrid materials. MRS Online Proc. Libr. 346(1), 937–942 (1994). https://doi.org/10.1557/PROC-346-937
M. Brik, J. Titman, J. Bayle, P. Judeinstein, Mapping of motional heterogeneity in organic-inorganic nanocomposite gels. J. Polym. Sci. Part B 34(15), 2533–2542 (1996). https://doi.org/10.1002/(SICI)1099-0488(19961115)34:15%3C2533::AID-POLB1%3E3.0.CO;2-U
K. Dahmouche, P. De Souza, T. Bonagamba, H. Paneppucci, P. Judeinstein, S.H. Pulcinelli et al., Investigation of new ion conducting ormolytes silica-polypropyleneglycol. J. Sol-Gel. Sci. Technol. 13(1), 909–913 (1998). https://doi.org/10.1023/A:1008627424438
K. Dahmouche, M. Atik, N.C. Mello, T.J. Bonagamba, H. Panepucci, M.A. Aegerter et al., Investigation of new ion-conducting ORMOLYTES: structure and properties. J. Sol-Gel. Sci. Technol. 8(1), 711–715 (1997). https://doi.org/10.1007/BF02436927
D. Ravaine, A. Seminel, Y. Charbouillot, M. Vincens, A new family of organically modified silicates prepared from gels. J. Non-Cryst. Solids 82(1–3), 210–219 (1986). https://doi.org/10.1016/0022-3093(86)90133-X
P.H. de Souza, R.F. Bianchi, K. Dahmouche, P. Judeinstein, R.M. Faria, T.J. Bonagamba, Solid-state NMR, ionic conductivity, and thermal studies of lithium-doped Siloxane− poly (propylene glycol) organic− inorganic nanocomposites. Chem. Mater. 13(10), 3685–3692 (2001). https://doi.org/10.1021/cm011023v
V. Kumar, R.R. Reddy, B.P. Kumar, C.V. Avadhani, S. Ganapathy, N. Chandrakumar et al., Lithium speciation in the LiPF6/PC electrolyte studied by two-dimensional heteronuclear overhauser enhancement and pulse-field gradient diffusometry NMR. J. Phys. Chem. C 123(15), 9661–9672 (2019). https://doi.org/10.1021/acs.jpcc.8b11599
S.J. Tambio, M. Deschamps, V. Sarou-Kanian, A. Etiemble, T. Douillard, E. Maire et al., Self-diffusion of electrolyte species in model battery electrodes using magic angle spinning and pulsed field gradient nuclear magnetic resonance. J. Power Sources 362, 315–322 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.010
G. Tulibaeva, A. Shestakov, V. Volkov, O. Yarmolenko, Structure of LiBF4 solvate complexes in ethylene carbonate, based on high-resolution NMR and quantum-chemical data. Russ. J. Phys. Chem. A 92(4), 749–755 (2018). https://doi.org/10.1134/S0036024418040313
Y. Wang, W. Chen, Q. Zhao, G. Jin, Z. Xue, Y. Wang et al., Ionicity of deep eutectic solvents by Walden plot and pulsed field gradient nuclear magnetic resonance (PFG-NMR). Phys. Chem. Chem. Phys. 22(44), 25760–25768 (2020). https://doi.org/10.1039/D0CP01431A
D. Lysak, A. Marinin, S. Dzhimak, Investigating the nuclear magnetic resonance of the structure of electrolyte based on a LiClO4—ethylene carbonate solution. Bull. Russ. Acad. Sci. Phys. 75(12), 1668–1670 (2011). https://doi.org/10.3103/S1062873811120227
L. Meabe, T.V. Huynh, N. Lago, H. Sardon, C. Li, L.A. O’Dell et al., Poly (ethylene oxide carbonates) solid polymer electrolytes for lithium batteries. Electrochim. Acta 264, 367–375 (2018). https://doi.org/10.1016/j.electacta.2018.01.101
Y.-X. Xiang, G. Zheng, G. Zhong, D. Wang, R. Fu, Y. Yang, Toward understanding of ion dynamics in highly conductive lithium ion conductors: some perspectives by solid state NMR techniques. Solid State Ion. 318, 19–26 (2018). https://doi.org/10.1016/j.ssi.2017.11.025
M. Becher, S. Becker, L. Hecht, M. Vogel, From local to diffusive dynamics in polymer electrolytes: NMR studies on coupling of polymer and ion dynamics across length and time scales. Macromolecules 52(23), 9128–9139 (2019). https://doi.org/10.1021/acs.macromol.9b01400
X. Fu, Y. Liu, W. Wang, L. Han, J. Yang, M. Ge et al., Probing the fast lithium-ion transport in small-molecule solid polymer electrolytes by solid-state NMR. Macromolecules 53(22), 10078–10085 (2020). https://doi.org/10.1021/acs.macromol.0c01521
B.-H. Wang, T. Xia, Q. Chen, Y.-F. Yao, Probing the dynamics of Li+ ions on the crystal surface: a solid-state NMR study. Polymers 12(2), 391 (2020). https://doi.org/10.3390/polym12020391
M.P. Rosenwinkel, M. Schönhoff, Polymer-induced inversion of the Li+ drift direction in ionic liquid-based ternary polymer electrolytes. Macromol. Chem. Phys. 223(8), 2100320 (2022). https://doi.org/10.1002/macp.202100320
N. Verdier, D. Lepage, R. Zidani, A. Prebe, D. Ayme-Perrot, C. Pellerin et al., Cross-linked polyacrylonitrile-based elastomer used as gel polymer electrolyte in Li-Ion battery. ACS Appl. Energy Mater. 3(1), 1099–1110 (2019). https://doi.org/10.1021/acsaem.9b02129
R. Poiana, E. Lufrano, A. Tsurumaki, C. Simari, I. Nicotera, M.A. Navarra, Safe gel polymer electrolytes for high voltage Li-batteries. Electrochim. Acta 401, 139470 (2022). https://doi.org/10.1016/j.electacta.2021.139470
L. Carbone, M. Gobet, J. Peng, M. Devany, B. Scrosati, S. Greenbaum et al., Polyethylene glycol dimethyl ether (PEGDME)-based electrolyte for lithium metal battery. J. Power Sources 299, 460–464 (2015). https://doi.org/10.1016/j.jpowsour.2015.08.090
D. Saikia, Y. Chen-Yang, Y. Chen, Y. Li, S. Lin, 7Li NMR spectroscopy and ion conduction mechanism of composite gel polymer electrolyte: a comparative study with variation of salt and plasticizer with filler. Electrochim. Acta 54(4), 1218–1227 (2009). https://doi.org/10.1016/j.electacta.2008.09.001
J. Popovic, D. Brandell, S. Ohno, K.B. Hatzell, J. Zheng, Y.-Y. Hu, Polymer-based hybrid battery electrolytes: theoretical insights, recent advances and challenges. J. Mater. Chem. A 9(10), 6050–6069 (2021). https://doi.org/10.1039/D0TA11679C
V.I. Volkov, A.V. Chernyak, I.A. Avilova, N.A. Slesarenko, D.L. Melnikova, V.D. Skirda, Molecular and ionic diffusion in ion exchange membranes and biological systems (Cells and proteins) studied by NMR. Membranes 11(6), 385 (2021). https://doi.org/10.3390/membranes11060385
P. Mustarelli, E. Quartarone, C. Capiglia, C. Tomasi, P. Ferloni, A. Magistris, Host–guest interactions in fluorinated polymer electrolytes: A 7 Li–13 C NMR study. J. Chem. Phys. 111(8), 3761–3768 (1999). https://doi.org/10.1063/1.479656
D. Morales, R.E. Ruther, J. Nanda, S. Greenbaum, Ion transport and association study of glyme-based electrolytes with lithium and sodium salts. Electrochim. Acta 304, 239–245 (2019). https://doi.org/10.1016/j.electacta.2019.02.110
R. Konefał, Z. Morávková, B. Paruzel, V. Patsula, S. Abbrent, K. Szutkowski et al., Effect of PAMAM dendrimers on interactions and transport of LiTFSI and NaTFSI in propylene carbonate-based electrolytes. Polymers 12(7), 1595 (2020). https://doi.org/10.3390/polym12071595
L. Carbone, S. Munoz, M. Gobet, M. Devany, S. Greenbaum, J. Hassoun, Characteristics of glyme electrolytes for sodium battery: nuclear magnetic resonance and electrochemical study. Electrochim. Acta 231, 223–229 (2017). https://doi.org/10.1016/j.electacta.2017.02.007
R. Zettl, M. Gombotz, D. Clarkson, S.G. Greenbaum, P. Ngene, P.E. De Jongh et al., Li-Ion diffusion in nanoconfined LiBH4-LiI/Al2O3: from 2D bulk transport to 3D long-range interfacial dynamics. ACS Appl. Mater. Interfaces 12(34), 38570–38583 (2020). https://doi.org/10.1021/acsami.0c10361
Maier J. Nanoionics: ion transport and electrochemical storage in confined systems. Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group. 2011: doi: https://doi.org/10.1142/9789814317665_0023.
N. Sata, K. Eberman, K. Eberl, J. Maier, Mesoscopic fast ion conduction in nanometre-scale planar heterostructures. Nature 408(6815), 946–949 (2000). https://doi.org/10.1038/35050047
O. Yarmolenko, A. Yudina, A. Marinin, A. Chernyak, V. Volkov, N. Shuvalova et al., Nanocomposite network polymer gel-electrolytes: TiO2-and Li2TiO3-nanoparticle effects on their structure and properties. Russ. J. Electrochem. 51(5), 412–420 (2015). https://doi.org/10.1134/S1023193515050171
N. Wu, P.H. Chien, Y. Qian, Y. Li, H. Xu, N.S. Grundish et al., Enhanced surface interactions enable fast Li+ conduction in oxide/polymer composite electrolyte. Angew. Chem. Int. Ed. 59(10), 4131–4137 (2020). https://doi.org/10.1002/anie.201914478
S. Menkin, M. Lifshitz, A. Haimovich, Goor H, Blanga R, Greenbaum S, et al., Evaluation of ion-transport in composite polymer-in-ceramic electrolytes: Case study of active and inert ceramics. Electrochim. Acta 304, 447–455 (2019). https://doi.org/10.1016/j.electacta.2019.03.006
V.I. Volkov, O.V. Yarmolenko, A.V. Chernyak, N.A. Slesarenko, I.A. Avilova, G.R. Baymuratova et al., Polymer electrolytes for lithium-ion batteries studied by NMR techniques. Membranes 12(4), 416 (2022). https://doi.org/10.3390/membranes12040416
G. Foran, N. Verdier, D. Lepage, C. Malveau, N. Dupré, M. Dollé, Use of solid-state NMR spectroscopy for the characterization of molecular structure and dynamics in solid polymer and hybrid electrolytes. Polymers 13(8), 1207 (2021). https://doi.org/10.3390/polym13081207
A. Hull, A new method of chemical analysis. J. Am. Chem. Soc. 41(8), 1168–1175 (1919). https://doi.org/10.1021/ja02229a003
Joshi NJ. Studies of nano sized high dielectric constant materials. Ph D Thesis. 2012.
Bishnoi A, Kumar S, Joshi N. Wide-angle X-ray diffraction (WXRD): technique for characterization of nanomaterials and polymer nanocomposites. Microscopy methods in nanomaterials characterization. Elsevier; 2017. pp. 313–37.
P.H. Suman, M.O. Orlandi, Influence of processing parameters on nanomaterials synthesis efficiency by a carbothermal reduction process. J. Nanopart. Res. 13(5), 2081–2088 (2011). https://doi.org/10.1007/s11051-010-9964-8
Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, O. Kamigaito, Synthesis of nylon 6–clay hybrid by montmorillonite intercalated with ϵ-caprolactam. J. Polym. Sci. Part A 31(4), 983–986 (1993). https://doi.org/10.1002/pola.1993.080310418
A.B. Morgan, J.W. Gilman, Characterization of polymer-layered silicate (clay) nanocomposites by transmission electron microscopy and X-ray diffraction: a comparative study. J. Appl. Polym. Sci. 87(8), 1329–1338 (2003). https://doi.org/10.1002/app.11884
M. Chen, J. Yin, X. Liu, Y. Feng, B. Su, Q. Lei, Microstructure and dielectric property study of polyimide/BaTiO3 nanocomposite films. Thin Solid Films 544, 116–119 (2013). https://doi.org/10.1016/j.tsf.2013.04.062
X. Liu, J. Yin, M. Chen, W. Bu, W. Cheng, Z. Wu, Effect of content on microstructure and dielectric performance of PI/Al2O3 hybrid films. Nanosci. Nanotechnol. Lett. 3(2), 226–229 (2011). https://doi.org/10.1166/nnl.2011.1158
X. Xia, J. Yin, B. Su, D. Hui, R. Yu, X. Liu, Quantitative determining interface information of nano composite by synchrotron radiation small-angle X-ray scattering. Compos. B 120, 92–96 (2017). https://doi.org/10.1016/j.compositesb.2017.03.058
G. Sandí, H. Joachin, R. Kizilel, S. Seifert, K.A. Carrado, In situ SAXS studies of the structural changes of polymer nanocomposites used in battery applications. Chem. Mater. 15(4), 838–843 (2003). https://doi.org/10.1021/cm020670z
G.O. Park, J. Yoon, E. Park, S.B. Park, H. Kim, K.H. Kim et al., In operando monitoring of the pore dynamics in ordered mesoporous electrode materials by small angle X-ray scattering. ACS Nano 9(5), 5470–5477 (2015). https://doi.org/10.1021/acsnano.5b01378
R. Alcántara, M. Jaraba, P. Lavela, J. Tirado, NiCo2O4 spinel: first report on a transition metal oxide for the negative electrode of sodium-ion batteries. Chem. Mater. 14(7), 2847–2848 (2002). https://doi.org/10.1021/cm025556v
W. Schmidt, H. Amenitsch, High dynamics of vapor adsorption in ordered mesoporous carbon CMK-5: a small angle X-ray scattering study. J. Phys. Chem. C 124(39), 21418–21425 (2020). https://doi.org/10.1021/acs.jpcc.0c05356
S.A. Milenin, E.V. Selezneva, P.A. Tikhonov, V.G. Vasilev, A.I. Buzin, N.K. Balabaev et al., Hybrid polycarbosilane-siloxane dendrimers: synthesis and properties. Polymers 13(4), 606 (2021). https://doi.org/10.3390/polym13040606
H. Tajima, P.A. Penttilä, T. Imai, K. Yamamoto, Y. Yuguchi, Observation of in vitro cellulose synthesis by bacterial cellulose synthase with time-resolved small angle X-ray scattering. Int. J. Biol. Macromol. 130, 765–777 (2019). https://doi.org/10.1016/j.ijbiomac.2019.02.167
J. Engström, A. Jimenez, E. Malmström, Nanoparticle rearrangement under stress in networks of cellulose nanofibrils using in situ SAXS during tensile testing. Nanoscale 12(11), 6462–6471 (2020). https://doi.org/10.1039/C9NR10964A
C.E. Blanchet, D.I. Svergun, Small-angle X-ray scattering on biological macromolecules and nanocomposites in solution. Annu. Rev. Phys. Chem. 64, 37–54 (2013)
M. Zienkiewicz-Strzałka, A. Deryło-Marczewska, S. Pikus, The synthesis and nanostructure investigation of noble metal-based nanocomposite materials. JMatS. 56(23), 13128–13145 (2021). https://doi.org/10.1007/s10853-021-06127-2
S. Mourdikoudis, R.M. Pallares, N.T. Thanh, Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale 10(27), 12871–12934 (2018). https://doi.org/10.1039/C8NR02278J
Yazid H, Murshidi JA, Jamro R, Harun MM, Mohamed AA. Composite material characterisation using an advanced small angle x-ray (SAXS) technique. IOP Conference Series: Materials Science and Engineering: IOP Publishing; 2018. p. 012026.
Z.H. Chen, S.H. Hwang, X.-B. Zeng, J. Roh, J. Jang, G. Ungar, SAXS characterization of polymer-embedded hollow nanoparticles and of their shell porosity. J. Appl. Crystallogr. 46(6), 1654–1664 (2013).
W. Wang, X. Chen, Q. Cai, G. Mo, L. Jiang, K. Zhang et al., In situ SAXS study on size changes of platinum nanoparticles with temperature. Eur. Phys. J. B 65(1), 57–64 (2008). https://doi.org/10.1140/epjb/e2008-00322-7
T. Li, A.J. Senesi, B. Lee, Small angle X-ray scattering for nanoparticle research. Chem. Rev. 116(18), 11128–11180 (2016). https://doi.org/10.1021/acs.chemrev.5b00690
X. Zhang, S. Bhuvana, L.S. Loo, Characterization of layered silicate dispersion in polymer nanocomposites using Fourier transform infrared spectroscopy. J. Appl. Polym. Sci. 125(S1), E175–E180 (2012). https://doi.org/10.1002/app.36266
E. Titus, N. Ali, G. Cabral, J. Gracio, P.R. Babu, M. Jackson, Chemically functionalized carbon nanotubes and their characterization using thermogravimetric analysis, fourier transform infrared, and raman spectroscopy. J. Mater. Eng. Perform. 15(2), 182–186 (2006). https://doi.org/10.1361/105994906X95841
S. Hussain, P. Jha, A. Chouksey, R. Raman, S. Islam, T. Islam et al., Spectroscopic investigation of modified single wall carbon nanotube (SWCNT). J. Mod. Phys. 2(06), 538 (2011). https://doi.org/10.4236/jmp.2011.26063
C.L. Ngo, Q.T. Le, T.T. Ngo, D.N. Nguyen, M.T. Vu, Surface modification and functionalization of carbon nanotube with some organic compounds. Adv. Nat. Sci. 4(3), 035017 (2013). https://doi.org/10.1088/2043-6262/4/3/035017
S.H. Lee, S.H. Choi, S.Y. Kim, J.I. Choi, J.R. Lee, J.R. Youn, Degradation and dynamic properties of poly (amide-co-imide)/carbon nanotube composite films. Polym. Polym. Compos. 18(7), 381–390 (2010).
A.E. Deniz, H.A. Vural, B. Ortaç, T. Uyar, Gold nanoparticle/polymer nanofibrous composites by laser ablation and electrospinning. Mater. Lett. 65(19–20), 2941–2943 (2011). https://doi.org/10.1016/j.matlet.2011.06.045
N.Y. Al-Attabi, G. Kaur, R. Adhikari, P. Cass, M. Bown, M. Evans et al., Preparation and characterization of highly conductive polyurethane composites containing graphene and gold nanoparticles. JMatS. 52(19), 11774–11784 (2017). https://doi.org/10.1007/s10853-017-1335-8
L. Bokobza, Filled elastomers: A new approach based on measurements of chain orientation. Polymer 42(12), 5415–5423 (2001). https://doi.org/10.1016/S0032-3861(00)00853-3
Bokobza L. Infrared analysis of elastomeric composites under uniaxial extension. Macromolecular Symposia: Wiley Online Library; 2005. pp. 45–60.
S. Besbes, I. Cermelli, L. Bokobza, L. Monnerie, I. Bahar, B. Erman et al., Segmental orientation in model networks of poly (dimethylsiloxane): fourier-transform infrared dichroism measurements and theoretical interpretation. Macromolecules 25(7), 1949–1954 (1992). https://doi.org/10.1021/ma00033a018
Cole KC, Perrin‐Sarazin F, Dorval‐Douville G. Infrared spectroscopic characterization of polymer and clay platelet orientation in blown films based on polypropylene‐clay nanocomposite. Macromolecular symposia: Wiley Online Library; 2005. pp. 1–10.
L. Bokobza, G. Garnaud, P. Beaunier, J.-L. Bruneel, Vibrational and electrical investigations of a uniaxially stretched polystyrene/carbon nanotube composite. Vib. Spectrosc. 67, 6–13 (2013). https://doi.org/10.1016/j.vibspec.2013.03.002
B.Z. Kurt, F. Uckaya, Z. Durmus, Chitosan and carboxymethyl cellulose based magnetic nanocomposites for application of peroxidase purification. Int. J. Biol. Macromol. 96, 149–160 (2017). https://doi.org/10.1016/j.ijbiomac.2016.12.042
Z. Rafiee, Z. Panji, Synthesis and characterization of optically active magnetic PAI/Fe3O4 nanocomposites. Amino Acids 50(8), 1007–1012 (2018). https://doi.org/10.1007/s00726-018-2577-8
J. Gu, W. Jiang, F. Wang, M. Chen, J. Mao, T. Xie, Facile removal of oils from water surfaces through highly hydrophobic and magnetic polymer nanocomposites. Appl. Surf. Sci. 301, 492–499 (2014). https://doi.org/10.1016/j.apsusc.2014.02.112
Mai Y-W, Yu Z-Z. Polymer nanocomposites. 2006.
A. Mohammadi, M. Barikani, M.M. Lakouraj, Biocompatible polyurethane/thiacalix [4] arenes functionalized Fe3O4 magnetic nanocomposites: synthesis and properties. Mater. Sci. Eng. C 66, 106–118 (2016). https://doi.org/10.1016/j.msec.2016.04.064
A. Gong, W. Ping, J. Wang, X. Zhu, Cyclodextrin polymer/Fe3O4 nanocomposites as solid phase extraction material coupled with UV–vis spectrometry for the analysis of rutin. Spectrochim. Acta Part A 122, 331–336 (2014). https://doi.org/10.1016/j.saa.2013.11.050
K.R. Reddy, K.P. Lee, A.I. Gopalan, Self-assembly approach for the synthesis of electro-magnetic functionalized Fe3O4/polyaniline nanocomposites: effect of dopant on the properties. Colloids Surf. Physicochem. Eng. Aspects. 320(1–3), 49–56 (2008). https://doi.org/10.1016/j.colsurfa.2007.12.057
M.-S. Shin, J.-K. Kim, J.-W. Kim, C.A.M. Moraes, H.-S. Kim, K.-K. Koo, Reaction characteristics of Al/Fe2O3 nanocomposites. J. Ind. Eng. Chem. 18(5), 1768–1773 (2012). https://doi.org/10.1016/j.jiec.2012.04.003
D. Mishra, R. Arora, S. Lahiri, S.S. Amritphale, N. Chandra, Synthesis and characterization of iron oxide nanoparticles by solvothermal method. Prot. Met. Phys. Chem. Surf. 50(5), 628–631 (2014). https://doi.org/10.1134/S2070205114050128
Margenot AJ, Calderón FJ, Goyne KW, Dmukome FN, Parikh S. IR spectroscopy, soil analysis applications. Encyclopedia of spectroscopy and spectrometry. Elsevier; 2016. pp. 448–54.
B. Unal, M. Toprak, Z. Durmus, H. Sözeri, A. Baykal, Synthesis, structural and conductivity characterization of alginic acid–Fe3O4 nanocomposite. J. Nanopart. Res. 12(8), 3039–3048 (2010). https://doi.org/10.1007/s11051-010-9898-1
C. Chanéac, E. Tronc, J.P. Jolivet, Magnetic iron oxide–silica nanocomposites Synthesis and characterization. J. Mater. Chem. 6(12), 1905–1911 (1996). https://doi.org/10.1039/JM9960601905
D. Ding, X. Yan, X. Zhang, Q. He, B. Qiu, D. Jiang et al., Preparation and enhanced properties of Fe3O4 nanoparticles reinforced polyimide nanocomposites. Superlatt. Microstruct. 85, 305–320 (2015). https://doi.org/10.1016/j.spmi.2015.03.008
M. Bagherzadeh, O. Mousavi, Z.S. Ghahfarokhi, Fabrication and characterization of a Fe 3 O 4/polyvinylpyrrolidone (Fe 3 O 4/PVP) nanocomposite as a coating for carbon steel in saline media. New J. Chem. 44(35), 15148–15156 (2020). https://doi.org/10.1039/D0NJ02979C
K. Gipson, K. Stevens, P. Brown, J. Ballato, Infrared spectroscopic characterization of photoluminescent polymer nanocomposites. J. Spectrosc. (2015). https://doi.org/10.1155/2015/489162
M.W. Noh, D.C. Lee, Synthesis and characterization of PS-clay nanocomposite by emulsion polymerization. Polym. Bull. 42(5), 619–626 (1999). https://doi.org/10.1007/s002890050510
M. Ashjari, A.R. Mahdavian, N.G. Ebrahimi, Y. Mosleh, Efficient dispersion of magnetite nanoparticles in the polyurethane matrix through solution mixing and investigation of the nanocomposite properties. J. Inorg. Organomet. Polym. Mater. 20(2), 213–219 (2010). https://doi.org/10.1007/s10904-010-9337-x
Z. Alrowaili, T. Taha, K.S. El-Nasser, H. Donya, Significant enhanced optical parameters of PVA-Y2O3 polymer nanocomposite films. J. Inorg. Organomet. Polym Mater. 31(7), 3101–3110 (2021). https://doi.org/10.1007/s10904-021-01995-2
Acharya N, Prajapati A, Pratap A, Saxena N. FTIR analysis of microwave irradiated polymer nanocomposites. AIP Conf Proc2010. p. 129.
A. Ahmed I, S. Hussein H, H. Ragab A, S. Al-Radadi. Synthesis and characterization of silica-coated oxyhydroxide aluminum/doped polymer nanocomposites: a comparative study and its application as a sorbent. Molecules. 2020;25(7):1520. doi: https://doi.org/10.3390/molecules25071520.
S.F. Bdewi, O.G. Abdullah, B.K. Aziz, A.A. Mutar, Synthesis, structural and optical characterization of MgO nanocrystalline embedded in PVA matrix. J. Inorg. Organomet. Polym Mater. 26(2), 326–334 (2016). https://doi.org/10.1007/s10904-015-0321-3
P. Nguyen-Tri, P. Ghassemi, P. Carriere, S. Nanda, A.A. Assadi, D.D. Nguyen, Recent applications of advanced atomic force microscopy in polymer science: A review. Polymers 12(5), 1142 (2020). https://doi.org/10.3390/polym12051142
M. Kelchtermans, M. Lo, E. Dillon, K. Kjoller, C. Marcott, Characterization of a polyethylene–polyamide multilayer film using nanoscale infrared spectroscopy and imaging. Vib Spectrosc. 82, 10–15 (2016). https://doi.org/10.1016/j.vibspec.2015.11.004
B. Van Eerdenbrugh, M. Lo, K. Kjoller, C. Marcott, L.S. Taylor, Nanoscale mid-infrared evaluation of the miscibility behavior of blends of dextran or maltodextrin with poly (vinylpyrrolidone). Mol Pharm. 9(5), 1459–1469 (2012). https://doi.org/10.1021/mp300059z
A. Mikhalchan, A.M. Banas, K. Banas, A.M. Borkowska, M. Nowakowski, M.B. Breese et al., Revealing chemical heterogeneity of CNT fiber nanocomposites via nanoscale chemical imaging. Chem Mater. 30(6), 1856–1864 (2018). https://doi.org/10.1021/acs.chemmater.7b04065
G. Van Assche, B. Van Mele, Interphase formation in model composites studied by micro-thermal analysis. Polymer 43(17), 4605–4610 (2002). https://doi.org/10.1016/S0032-3861(02)00298-7
A. Ali, P. Morrow, R. Henda, R. Fagerberg, Deposition of cobalt doped zinc oxide thin film nano-composites via pulsed electron beam ablation. MRS Advances. 1(6), 433–439 (2016). https://doi.org/10.1557/adv.2016.44
E. Pancani, J. Mathurin, S. Bilent, M.F. Bernet-Camard, A. Dazzi, A. Deniset-Besseau et al., High-Resolution Label-Free Detection of Biocompatible Polymeric Nanoparticles in Cells. Part. Part. Syst. Charact. 35(3), 1700457 (2018). https://doi.org/10.1002/ppsc.201700457
A. Centrone, Infrared imaging and spectroscopy beyond the diffraction limit. Annu. Rev. Anal. Chem. 8, 101–126 (2015). https://doi.org/10.1146/annurev-anchem-071114-040435
Xiao L, Schultz ZD. Spectroscopic imaging at the nanoscale: technologies and recent applications. Analytical chemistry. 2018;90(1):440.
W. Fu, W. Zhang, Hybrid AFM for nanoscale physicochemical characterization: recent development and emerging applications. Small 13(11), 1603525 (2017). https://doi.org/10.1002/smll.201603525
C. Marcott, M. Lo, E. Dillon, K. Kjoller, C. Prater, Interface analysis of composites using AFM-based nanoscale IR and mechanical spectroscopy. Microscopy Today. 23(2), 38–45 (2015). https://doi.org/10.1017/S1551929515000036
A. Dazzi, C.B. Prater, AFM-IR: Technology and applications in nanoscale infrared spectroscopy and chemical imaging. Chem Rev. 117(7), 5146–5173 (2017). https://doi.org/10.1021/acs.chemrev.6b00448
S. Iijima, Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991).
L. Bokobza, M. Couzi, J.-L. Bruneel, Raman spectroscopy of polymer–carbon nanomaterial composites. Rubber Chem Technol. 90(1), 37–59 (2017). https://doi.org/10.1533/9780857091390.2.400
G. Bounos, K.S. Andrikopoulos, T.K. Karachalios, G.A. Voyiatzis, Evaluation of multi-walled carbon nanotube concentrations in polymer nanocomposites by Raman spectroscopy. Carbon 76, 301–309 (2014). https://doi.org/10.1016/j.carbon.2014.04.081
N. Everall, J. Lumsdon, D. Christopher, The effect of laser-induced heating upon the vibrational Raman spectra of graphites and carbon fibres. Carbon 29(2), 133–137 (1991). https://doi.org/10.1016/0008-6223(91)90064-P
X. Yan, Y. Kitahama, H. Sato, T. Suzuki, X. Han, T. Itoh et al., Laser heating effect on Raman spectra of styrene–butadiene rubber/multiwalled carbon nanotube nanocomposites. Chem. Phys. Lett. 523, 87–91 (2012). https://doi.org/10.1016/j.cplett.2011.11.082
C. Kao, R. Young, A Raman spectroscopic investigation of heating effects and the deformation behaviour of epoxy/SWNT composites. Compos. Sci. Technol. 64(15), 2291–2295 (2004). https://doi.org/10.1016/j.compscitech.2004.01.019
Bokobza L, Zhang J. Raman spectroscopic characterization of multiwall carbon nanotubes and of composites. Express Polymer Letters. 2012;6(7). doi: http://dx.doi.org/https://doi.org/10.3144/expresspolymlett.2012.63.
Bokobza L, Bruneel J-L, Couzi M. Raman spectroscopic investigation of carbon-based materials and their composites. Comparison between carbon nanotubes and carbon black. Chemical Physics Letters. 2013;590:153–9. doi: https://doi.org/10.1016/j.cplett.2013.10.071.
I. Srivastava, R.J. Mehta, Z.-Z. Yu, L. Schadler, N. Koratkar, Raman study of interfacial load transfer in graphene nanocomposites. Appl. Phys. Lett. 98(6), 063102 (2011). https://doi.org/10.1063/1.3552685
A. Beigbeder, M. Linares, M. Devalckenaere, P. Degée, M. Claes, D. Beljonne et al., CH-π Interactions as the Driving Force for Silicone-Based Nanocomposites with Exceptional Properties. Adv Mater. 20(5), 1003–1007 (2008). https://doi.org/10.1002/adma.200701497
L. Bokobza, Some issues in rubber nanocomposites: New opportunities for silicone materials. SILICON 1(3), 141–145 (2009). https://doi.org/10.1007/s12633-009-9010-6
M.D. Frogley, D. Ravich, H.D. Wagner, Mechanical properties of carbon nanoparticle-reinforced elastomers. Compos. Sci. Technol. 63(11), 1647–1654 (2003). https://doi.org/10.1016/S0266-3538(03)00066-6
N. Kumar, S. Mignuzzi, W. Su, D. Roy, Tip-enhanced Raman spectroscopy: principles and applications. EPJ Techniques and Instrumentation. 2(1), 9 (2015). https://doi.org/10.1140/epjti/s40485-015-0019-5
D. Kurouski, Advances of tip-enhanced Raman spectroscopy (TERS) in electrochemistry, biochemistry, and surface science. Vib Spectrosc. 91, 3–15 (2017). https://doi.org/10.1016/j.vibspec.2016.06.004
Saito Y, Yanagi K. Using a nano light source to investigate small-scale composite materials. Citeseer; 2008.
Yano T-a, Inouye Y, Kawata S. Nanoscale uniaxial pressure effect of a carbon nanotube bundle on tip-enhanced near-field Raman spectra. Nano Lett. 2006;6(6):1269–73. doi: https://doi.org/10.1021/nl060108y.
Yano T-a, Ichimura T, Kuwahara S, H’Dhili F, Uetsuki K, Okuno Y, et al. Tip-enhanced nano-Raman analytical imaging of locally induced strain distribution in carbon nanotubes. Nature communications. 2013;4(1):1–7. doi: https://doi.org/10.1038/ncomms3592.
Vantasin S, Yan X-l, Suzuki T, Ozaki Y. Tip-Enhanced Raman Scattering of Nanomaterials. e-Journal of Surface Science and Nanotechnology. 2015;13:329–38. doi: https://doi.org/10.1380/ejssnt.2015.329.
T. Suzuki, X. Yan, Y. Kitahama, H. Sato, T. Itoh, T. Miura et al., Tip-enhanced Raman spectroscopy study of local interactions at the interface of styrene–butadiene rubber/multiwalled carbon nanotube nanocomposites. The Journal of Physical Chemistry C. 117(3), 1436–1440 (2013). https://doi.org/10.1021/jp309217y
K.S. Giesfeldt, R.M. Connatser, M.A. De Jesús, P. Dutta, M.J. Sepaniak, Gold-polymer nanocomposites: studies of their optical properties and their potential as SERS substrates. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering. 36(12), 1134–1142 (2005). https://doi.org/10.1002/jrs.1418
S. Fateixa, A.V. Girao, H.I. Nogueira, T. Trindade, Polymer based silver nanocomposites as versatile solid film and aqueous emulsion SERS substrates. J. Mater. Chem. 21(39), 15629–15636 (2011). https://doi.org/10.1039/C1JM12444G
V.K. Rao, T. Radhakrishnan, Tuning the SERS response with Ag-Au nanoparticle-embedded polymer thin film substrates. ACS Appl. Mater. Interfaces. 7(23), 12767–12773 (2015). https://doi.org/10.1021/acsami.5b04180
A. Biswas, I.S. Bayer, D.H. Dahanayaka, L.A. Bumm, Z. Li, F. Watanabe et al., Tailored polymer–metal fractal nanocomposites: an approach to highly active surface enhanced Raman scattering substrates. Nanotechnology 20(32), 325705 (2009). https://doi.org/10.1088/0957-4484/20/32/325705
S. Schlücker, Surface-Enhanced raman spectroscopy: Concepts and chemical applications. Angew Chem Int Ed. 53(19), 4756–4795 (2014). https://doi.org/10.1002/anie.201205748
Chang J, Zhi X, Zhang A. Application of Graphene in Surface-Enhanced Raman Spectroscopy. Nano Biomed Eng. 2017;9(1). doi: https://doi.org/10.5101/NBE.V9I1.P49-56.
D. Carboni, B. Lasio, V. Alzari, A. Mariani, D. Loche, M.F. Casula et al., Graphene-mediated surface enhanced Raman scattering in silica mesoporous nanocomposite films. Phys. Chem. Chem. Phys. 16(47), 25809–25818 (2014). https://doi.org/10.1039/C4CP03582H
W. Li, S.T. Buschhorn, K. Schulte, W. Bauhofer, The imaging mechanism, imaging depth, and parameters influencing the visibility of carbon nanotubes in a polymer matrix using an SEM. Carbon 49(6), 1955–1964 (2011). https://doi.org/10.1016/j.carbon.2010.12.069
B.A. Newcomb, L.A. Giannuzzi, K.M. Lyons, P.V. Gulgunje, K. Gupta, Y. Liu et al., High resolution transmission electron microscopy study on polyacrylonitrile/carbon nanotube based carbon fibers and the effect of structure development on the thermal and electrical conductivities. Carbon 93, 502–514 (2015). https://doi.org/10.1016/j.carbon.2015.05.037
Z. Jin, X. Sun, G. Xu, S.H. Goh, W. Ji, Nonlinear optical properties of some polymer/multi-walled carbon nanotube composites. Chem. Phys. Lett. 318(6), 505–510 (2000). https://doi.org/10.1016/S0009-2614(00)00091-9
Y. Gao, L. Li, P. Tan, L. Liu, Z. Zhang, Application of Raman spectroscopy in carbon nanotube-based polymer composites. Chin. Sci. Bull. 55(35), 3978–3988 (2010). https://doi.org/10.1007/s11434-010-4100-9
M. Rahmat, K. Das, P. Hubert, Interaction stresses in carbon nanotube–polymer nanocomposites. ACS Appl. Mater. Interfaces. 3(9), 3425–3431 (2011). https://doi.org/10.1021/am200652f
M. Baibarac, I. Baltog, S. Lefrant, Raman spectroscopic evidence for interfacial interactions in poly (bithiophene)/single-walled carbon nanotube composites. Carbon 47(5), 1389–1398 (2009). https://doi.org/10.1016/j.carbon.2009.01.031
X. Chen, L. Zhang, M. Zheng, C. Park, X. Wang, C. Ke, Quantitative nanomechanical characterization of the van der Waals interfaces between carbon nanotubes and epoxy. Carbon 82, 214–228 (2015). https://doi.org/10.1016/j.carbon.2014.10.065
J. Chen, K. Xu, Applications of atomic force microscopy in materials, semiconductors, polymers, and medicine: A minireview. Instrum Sci. Technol. 48(6), 667–681 (2020). https://doi.org/10.1080/10739149.2020.1764030
M. Cascione, V. De Matteis, F. Persano, S. Leporatti, AFM Characterization of Halloysite Clay Nanocomposites’ Superficial Properties: Current State-of-the-Art and Perspectives. Materials. 15(10), 3441 (2022). https://doi.org/10.3390/ma15103441
G. Binnig, C.F. Quate, C. Gerber, Atomic force microscope. Phys. Rev. Lett. 56(9), 930 (1986). https://doi.org/10.1103/PhysRevLett.56.930
Huang H. Electrochemical Application and AFM Characterization of Nanocomposites: Focus on Interphase Properties. KTH Royal Institute of Technology; 2017.
R.A. Vaia, H.D. Wagner, Framework for nanocomposites. Mater Today. 7(11), 32–37 (2004). https://doi.org/10.1016/S1369-7021(04)00506-1
H.D. Wagner, R.A. Vaia, Nanocomposites: issues at the interface. Mater Today. 7(11), 38–42 (2004). https://doi.org/10.1016/S1369-7021(04)00507-3
Y. Zare, Development of Halpin-Tsai model for polymer nanocomposites assuming interphase properties and nanofiller size. Polym Test. 51, 69–73 (2016). https://doi.org/10.1016/j.polymertesting.2016.02.010
Evgenievna Sukhanova T, A. Kuznetsova T, A. Lapitskaya V, I. Zubar T, A. Chizhik S, E. Vylegzhanina M, et al. Characterization of Multiblock (Segmented) Copolyurethane- Imides and Nanocomposites Based Thereof Using AFM, Nanotribology, and Nanoindentation Methods. Atomic-force Microscopy and Its Applications. 2019.
T. Kuznetsova, S. Chizhik, A. Khudoley, Deformation structuring of aluminum films upon microindentation. J. Surf. Invest. 8(6), 1275–1285 (2014). https://doi.org/10.1134/S1027451014050115
Sukhanova T, Kuznetsova TA VM, Svetlichnyi V, Zubar T, Chizhik S. Possibilities of using probe methods in the diagnostics of nanomodified thermoplastic elastomers. XII Intern Conf Methodological Aspects of Scanning Probe Microscopy; Minsk: Belaruskaya Navuka2016. p. 8–17.
A.H. Barber, S.R. Cohen, H.D. Wagner, Measurement of carbon nanotube–polymer interfacial strength. Appl. Phys. Lett. 82(23), 4140–4142 (2003). https://doi.org/10.1063/1.1579568
Chen J, Gao X, Xu D. Recent Advances in Characterization Techniques for the Interface in Carbon Nanotube-Reinforced Polymer Nanocomposites. Adv Mater Sci Eng. 2019;2019. doi: https://doi.org/10.1155/2019/5268267.
M.C. Strus, C.I. Cano, R.B. Pipes, C.V. Nguyen, A. Raman, Interfacial energy between carbon nanotubes and polymers measured from nanoscale peel tests in the atomic force microscope. Compos. Sci. Technol. 69(10), 1580–1586 (2009). https://doi.org/10.1016/j.compscitech.2009.02.026
Y. Ganesan, C. Peng, Y. Lu, P.E. Loya, P. Moloney, E. Barrera et al., Interface toughness of carbon nanotube reinforced epoxy composites. ACS Appl. Mater. Interfaces. 3(2), 129–134 (2011). https://doi.org/10.1021/am1011047
A.H. Barber, S.R. Cohen, A. Eitan, L.S. Schadler, H.D. Wagner, Fracture transitions at a carbon-nanotube/polymer interface. Adv Mater. 18(1), 83–87 (2006). https://doi.org/10.1002/adma.200501033
S.-Y. Fu, Z.-K. Chen, S. Hong, C.C. Han, The reduction of carbon nanotube (CNT) length during the manufacture of CNT/polymer composites and a method to simultaneously determine the resulting CNT and interfacial strengths. Carbon 47(14), 3192–3200 (2009). https://doi.org/10.1016/j.carbon.2009.07.028
Y.-N. Liu, M. Li, Y. Gu, X. Zhang, J. Zhao, Q. Li et al., The interfacial strength and fracture characteristics of ethanol and polymer modified carbon nanotube fibers in their epoxy composites. Carbon 52, 550–558 (2013). https://doi.org/10.1016/j.carbon.2012.10.011
T. Tsuda, T. Ogasawara, F. Deng, N. Takeda, Direct measurements of interfacial shear strength of multi-walled carbon nanotube/PEEK composite using a nano-pullout method. Compos. Sci. Technol. 71(10), 1295–1300 (2011). https://doi.org/10.1016/j.compscitech.2011.04.014
M. Manoharan, A. Sharma, A. Desai, M. Haque, C. Bakis, K. Wang, The interfacial strength of carbon nanofiber epoxy composite using single fiber pullout experiments. Nanotechnology 20(29), 295701 (2009). https://doi.org/10.1088/0957-4484/20/29/295701
Last JA, Russell P, Nealey PF, Murphy CJ. The applications of atomic force microscopy to vision science. Invest Ophthalmol Visual Sci. 2010;51(12):6083–94.
M. Liu, Y. Zhang, C. Wu, S. Xiong, C. Zhou, Chitosan/halloysite nanotubes bionanocomposites: structure, mechanical properties and biocompatibility. Int. J. Biol. Macromol. 51(4), 566–575 (2012). https://doi.org/10.1016/j.ijbiomac.2012.06.022
Z.W. Abdullah, Y. Dong, N. Han, S. Liu, Water and gas barrier properties of polyvinyl alcohol (PVA)/starch (ST)/glycerol (GL)/halloysite nanotube (HNT) bionanocomposite films: Experimental characterisation and modelling approach. Compos. B Eng. 174, 107033 (2019). https://doi.org/10.1016/j.compositesb.2019.107033
S. Kouser, A. Prabhu, K. Prashantha, G. Nagaraja, J.N. D’souza, K.M. Navada et al., Modified halloysite nanotubes with Chitosan incorporated PVA/PVP bionanocomposite films: thermal, mechanical properties and biocompatibility for tissue engineering. Colloids Surf. Physicochem. Eng. Aspects. 634, 127941 (2022). https://doi.org/10.1016/j.colsurfa.2021.127941
M. Liu, L. Dai, H. Shi, S. Xiong, C. Zhou, In vitro evaluation of alginate/halloysite nanotube composite scaffolds for tissue engineering. Mater. Sci. Eng. C 49, 700–712 (2015). https://doi.org/10.1016/j.msec.2015.01.037
R. Umetsu, J. Kumaki, Fabrication of a polymer molecularly flat substrate by thermal nanoimprinting and AFM observation of polymer chains deposited on it. Macromolecules 52(17), 6555–6565 (2019). https://doi.org/10.1021/acs.macromol.9b01280
N. Kamal, S. Ahzi, V. Kochkodan, Polysulfone/halloysite composite membranes with low fouling properties and enhanced compaction resistance. Appl. Clay Sci. 199, 105873 (2020). https://doi.org/10.1016/j.clay.2020.105873
S. Batasheva, M. Kryuchkova, R. Fakhrullin, G. Cavallaro, G. Lazzara, F. Akhatova et al., Facile fabrication of natural polyelectrolyte-nanoclay composites: halloysite nanotubes, nucleotides and DNA study. Molecules 25(15), 3557 (2020). https://doi.org/10.3390/molecules25153557
R.S. Das, Y. Agrawal, Raman spectroscopy: recent advancements, techniques and applications. Vib. Spectrosc. 57(2), 163–176 (2011). https://doi.org/10.1016/j.vibspec.2011.08.003
R. Scipioni, D. Gazzoli, F. Teocoli, O. Palumbo, A. Paolone, N. Ibris et al., Preparation and characterization of nanocomposite polymer membranes containing functionalized SnO2 additives. Membranes 4(1), 123–142 (2014). https://doi.org/10.3390/membranes4010123
J.C. Fernandes, V. Mareau, L. Gonon, AFM-Raman colocalization setup: advanced characterization technique for polymers. Int. J. Polym. Anal. Charact. 23(2), 113–119 (2018). https://doi.org/10.1080/1023666X.2017.1391740
M. Jin, F. Lu, M.A. Belkin, High-sensitivity infrared vibrational nanospectroscopy in water. Light. 6(7), 17096 (2017). https://doi.org/10.1038/lsa.2017.96
T. Hassenkam, M. Andersson, K. Dalby, D. Mackenzie, M. Rosing, Elements of Eoarchean life trapped in mineral inclusions. Nature 548(7665), 78–81 (2017). https://doi.org/10.1038/nature23261
B.T. O’callahan, A.C. Jones, J. Hyung Park, D.H. Cobden, J.M. Atkin, M.B. Raschke, Inhomogeneity of the ultrafast insulator-to-metal transition dynamics of VO2. Nat. Commun. 6(1), 1–8 (2015). https://doi.org/10.1038/ncomms7849
N. Qin, S. Zhang, J. Jiang, S.G. Corder, Z. Qian, Z. Zhou et al., Nanoscale probing of electron-regulated structural transitions in silk proteins by near-field IR imaging and nano-spectroscopy. Nat. Commun. 7(1), 1–8 (2016). https://doi.org/10.1038/ncomms13079
F. Ruggeri, G. Longo, S. Faggiano, E. Lipiec, A. Pastore, G. Dietler, Infrared nanospectroscopy characterization of oligomeric and fibrillar aggregates during amyloid formation. Nat. Commun. 6(1), 1–9 (2015). https://doi.org/10.1038/ncomms8831
J. Yang, J. Hatcherian, P.C. Hackley, A.E. Pomerantz, Nanoscale geochemical and geomechanical characterization of organic matter in shale. Nat. Commun. 8(1), 1–9 (2017). https://doi.org/10.1038/s41467-017-02254-0
S. Ghosh, N.A. Kouamé, L. Ramos, S. Remita, A. Dazzi, A. Deniset-Besseau et al., Conducting polymer nanostructures for photocatalysis under visible light. Nat. Mater. 14(5), 505–511 (2015). https://doi.org/10.1038/nmat4220
Y. Liu, L. Collins, R. Proksch, S. Kim, B.R. Watson, B. Doughty et al., Chemical nature of ferroelastic twin domains in CH3NH3PbI3 perovskite. Nat. Mater. 17(11), 1013–1019 (2018). https://doi.org/10.1038/s41563-018-0152-z
F. Lu, M. Jin, M.A. Belkin, Tip-enhanced infrared nanospectroscopy via molecular expansion force detection. Nat. Photon. 8(4), 307–312 (2014). https://doi.org/10.1038/nphoton.2013.373
L.B. Capeletti, J.H. Zimnoch, Fourier transform infrared and Raman characterization of silica-based materials Mol Spectrosc. Curr. Res. Chem. Biol. Sci. Appl. 10, 11 (2016). https://doi.org/10.5772/64477
Alexander R (2008) Advantages of Raman spectroscopy when analyzing materials through glass or polymer containers and in aqueous solution. PerkinElmer Inc.
Funding
No funding was received for this study.
Author information
Authors and Affiliations
Contributions
All authors contributed equally to manuscript.
Corresponding author
Ethics declarations
Conflict of interest
There are no conflicts of interest to disclose this work.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Batool, M., Haider, M.N. & Javed, T. Applications of Spectroscopic Techniques for Characterization of Polymer Nanocomposite: A Review. J Inorg Organomet Polym 32, 4478–4503 (2022). https://doi.org/10.1007/s10904-022-02461-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10904-022-02461-3