Skip to main content

Advertisement

Log in

A DFT Study of Halogen (F, Cl, and Br) Encapsulated Ga12X12 (X = N, P, and As) Nanocages for Sodium-Ion Batteries

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this work, we have theoretically investigated the adsorption of Na and Na+ ions on Ga12N12, Ga12P12, and Ga12As12 nanocages as anode materials for sodium-ion batteries (SIBs) using density functional theory (DFT). The geometrical parameters, interaction energy (Eint), frontier molecular orbitals (FMOs), and electrochemical properties of neutral and cationic Na with the nanocages were comprehensively examined. Based on the results, the structural parameter reveals that the Na atom binds strongly to N, P, and As atoms of the nanocages. Among the complexes, the smallest bond distance of 2.206 Å is noted for Na/Ga12N12 nanocage. Additionally, higher interaction energy of − 57.99 kcal/mol is observed for Na+/Ga12N12 and the FMOs analysis illustrates that Na+ has more significant interaction than the neutral one. Furthermore, encapsulating the complexes with halide (F, Cl and Br) results in higher cell voltage (Vcell) on comparison with the bare nanocage of SIBs. The overall analysis illustrates that fluorine encapsulated Na/Ga12N12 has more Vcell than chlorine and bromine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A.J. Haider, A.A. Al-Tabbakh, A.B. Al-Zubaidi, R.A. Rsool, Preparation and characterization of LiCo0.5Ni0.45Ag0.05O2 cathode material for lithium–ion battery. J. Mater. Sci. Mater. Electron. 29, 13277–13285 (2018). https://doi.org/10.1007/s10854-018-9451-z

    Article  CAS  Google Scholar 

  2. W. Tang, Y. Zhu, Y. Hou, L. Liu, Y. Wu, K.P. Loh, H. Zhang, K. Zhu, Aqueous rechargeable lithium batteries as an energy storage system of superfast charging. Energy Environ. Sci. 6, 2093–2104 (2013). https://doi.org/10.1039/c3ee24249h

    Article  CAS  Google Scholar 

  3. J. Niu, Z. Zhang, D. Aurbach, Alloy anode materials for rechargeable Mg ion batteries. Adv. Energy Mater. 10, 1–33 (2020). https://doi.org/10.1002/aenm.202000697

    Article  CAS  Google Scholar 

  4. Y. Nishi, Lithium ion secondary batteries; past 10 years and the future. J. Power Sources. 100, 101–106 (2001). https://doi.org/10.1016/S0378-7753(01)00887-4

    Article  CAS  Google Scholar 

  5. A.A. Qayyum, Z.S. Khan, S. Ashraf, N. Ahmed, Amorphous codoped SnS/CNTs nanocomposite with improved capacity retention as an advanced sodium-ion battery anode. J. Mater. Sci. Mater. Electron. 31, 14521–14530 (2020). https://doi.org/10.1007/s10854-020-04012-3

    Article  CAS  Google Scholar 

  6. N. Kosar, M. Asgar, K. Ayub, T. Mahmood, Halides encapsulation in aluminum/boron phosphide nanoclusters: an effective strategy for high cell voltage in Na-ion battery. Mater. Sci. Semicond. Process. 97, 71–79 (2019). https://doi.org/10.1016/j.mssp.2019.03.011

    Article  CAS  Google Scholar 

  7. J.M. Tarascon, Key challenges in future Li-battery research. Philos. Trans. R. Soc. A 368, 3227–3241 (2010). https://doi.org/10.1098/rsta.2010.0112

    Article  Google Scholar 

  8. R.C. Massé, E. Uchaker, G. Cao, Beyond Li-ion: electrode materials for sodium- and magnesium-ion batteries. Sci. China Mater. 58, 715–766 (2015). https://doi.org/10.1007/s40843-015-0084-8

    Article  CAS  Google Scholar 

  9. S. Chen, Z. Ao, B. Sun, X. Xie, G. Wang, Porous carbon nanocages encapsulated with tin nanoparticles for high performance sodium-ion batteries. Energy Storage Mater. 5, 180–190 (2016). https://doi.org/10.1016/j.ensm.2016.07.001

    Article  Google Scholar 

  10. S. Kim, D. Seo, X. Ma, G. Ceder, K. Kang, Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv. Energy Mater. (2012). https://doi.org/10.1002/aenm.201200026

    Article  Google Scholar 

  11. L. Cao, Y. Wang, H. Hu, J. Huang, L. Kou, Z. Xu, J. Li, A N/S-codoped disordered carbon with enlarged interlayer distance derived from cirsium setosum as high-performance anode for sodium ion batteries. J. Mater. Sci. Mater. Electron. 30, 21323–21331 (2019). https://doi.org/10.1007/s10854-019-02509-0

    Article  CAS  Google Scholar 

  12. Y. Cao, F. Pan, H. Wang, Z. Yang, J. Sun, Density functional theory calculations for the evaluation of FePS3 as a promising anode for Mg Ion Batteries. Trans. Tianjin Univ. 26, 248–255 (2020). https://doi.org/10.1007/s12209-020-00253-9

    Article  CAS  Google Scholar 

  13. P. Panigrahi, S.B. Mishra, T. Hussain, B.R.K. Nanda, R. Ahuja, Density functional theory studies of Si2BN nanosheets as anode materials for magnesium-ion batteries. ACS Appl. Nano Mater. 3, 9055–9063 (2020). https://doi.org/10.1021/acsanm.0c01747

    Article  CAS  Google Scholar 

  14. T. Perveen, M. Siddiq, N. Shahzad, R. Ihsan, A. Ahmad, M.I. Shahzad, Prospects in anode materials for sodium ion batteries—a review. Renew. Sustain. Energy Rev. 119, 109549 (2020). https://doi.org/10.1016/j.rser.2019.109549

    Article  CAS  Google Scholar 

  15. D. Li, Y. Yuan, J. Liu, M. Fichtner, F. Pan, A review on current anode materials for rechargeable Mg batteries. J. Magnes. Alloys 8, 963–979 (2020). https://doi.org/10.1016/j.jma.2020.09.017

    Article  CAS  Google Scholar 

  16. J. Kan, H. Wang, H. Zhang, J. Shi, W. Liu, D. Li, G. Dong, Y. Yang, R. Gao, Nitrogen functionalized carbon nanocages optimized as high-performance anodes for sodium ion storage. Electrochim. Acta. 304, 192–201 (2019). https://doi.org/10.1016/j.electacta.2019.03.001

    Article  CAS  Google Scholar 

  17. Y. Zhao, Q. Fu, D. Wang, Q. Pang, Y. Gao, A. Missiul, R. Nemausat, A. Sarapulova, H. Ehrenberg, Y. Wei, G. Chen, Co9S8@carbon yolk-shell nanocages as a high performance direct conversion anode material for sodium ion batteries. Energy Storage Mater. 18, 51–58 (2019). https://doi.org/10.1016/j.ensm.2018.09.005

    Article  CAS  Google Scholar 

  18. N. Kosar, F. Ullah, K. Ayub, U. Rashid, M. Imran, M.N. Ahmed, T. Mahmood, Theoretical investigation of halides encapsulated Na@B40 nanocages for potential applications as anodes for sodium ion batteries. Mater. Sci. Semicond. Process. 121, 105437 (2021). https://doi.org/10.1016/j.mssp.2020.105437

    Article  CAS  Google Scholar 

  19. P. Makarios, S. Paul, P. Gopalan, A. Angamuthu, Materials science in semiconductor processing feasibility of halide ( F, Cl and Br) encapsulated Be12O12 nanocages as potential anode for metal-ion batteries—a DFT-D3 approach. Mater. Sci. Semicond. Process. 147, 106719 (2022). https://doi.org/10.1016/j.mssp.2022.106719

    Article  CAS  Google Scholar 

  20. K. Nejati, A. Hosseinian, A. Bekhradnia, E. Vessally, L. Edjlali, Journal of molecular graphics and modelling Na-ion batteries based on the inorganic BN nanocluster anodes: DFT studies. J. Mol. Graph. Model. 74, 1–7 (2017). https://doi.org/10.1016/j.jmgm.2017.03.001

    Article  CAS  PubMed  Google Scholar 

  21. M. Noei, E. Mohammadinasab, N. Ahmadaghaei, The effect of electric field on the cell voltage of inorganic AlN nanosheet based Na–ion batteries. Inorg. Chem. Commun. 91, 29–34 (2018). https://doi.org/10.1016/j.inoche.2018.03.011

    Article  CAS  Google Scholar 

  22. M.R.S.A. Janjua, Hydrogen as an energy currency: encapsulation of inorganic Ga12N12 with alkali metals for efficient H2 adsorption as hydrogen storage materials. J. Phys. Chem. Solids. 160, 110352 (2022). https://doi.org/10.1016/j.jpcs.2021.110352

    Article  CAS  Google Scholar 

  23. W. Yang, X. Zhang, H. Tan, D. Yang, Y. Feng, X. Rui, Y. Yu, Gallium-based anodes for alkali metal ion batteries. J. Energy Chem. 55, 557–571 (2021). https://doi.org/10.1016/j.jechem.2020.07.035

    Article  CAS  Google Scholar 

  24. P. Lu, C. Wu, Y. Li, Z. Yu, H. Cao, S. Wang, Investigation on structural, electronic, and magnetic properties of Mn-doped Ga12N12 clusters. J. Mater. Sci. 48, 8552–8558 (2013). https://doi.org/10.1007/s10853-013-7674-1

    Article  CAS  Google Scholar 

  25. Z. Zhao, Z. Li, Theoretical assessment of the differences in transition metal embedded fullerene-like Ga12N12 clusters. Chem. Phys. Lett. 754, 137752 (2020). https://doi.org/10.1016/j.cplett.2020.137752

    Article  CAS  Google Scholar 

  26. E. Tahmasebi, E. Shakerzadeh, Z. Biglari, Theoretical assessment of the electro-optical features of the group III nitrides (B12N12, Al12N12 and Ga12N12) and group IV carbides (C24, Si12C12 and Ge12C12) nanoclusters encapsulated with alkali metals (Li, Na and K). Appl. Surf. Sci. 363, 197–208 (2016). https://doi.org/10.1016/j.apsusc.2015.12.001

    Article  CAS  Google Scholar 

  27. Z. Syum, H. Woldeghebriel, The structure and electronic properties of (GaAs)n and Al/In-doped (GaAs)n (n = 2–20) clusters. Comput. Theor. Chem. 1048, 7–17 (2014). https://doi.org/10.1016/j.comptc.2014.08.026

    Article  CAS  Google Scholar 

  28. X. Zhang, L. Jin, X. Dai, G. Chen, G. Liu, Two-dimensional GaN: an excellent electrode material providing fast ion diffusion and high storage capacity for Li-ion and Na-ion batteries. ACS Appl. Mater. Interfaces. 10, 38978–38984 (2018). https://doi.org/10.1021/acsami.8b15139

    Article  CAS  PubMed  Google Scholar 

  29. N.N. Anua, R. Ahmed, A. Shaari, B.U. Haq, M.B. Mohamad, DFT investigations of the optical properties of gallium arsenide. Adv. Mater. Res. 895, 429–438 (2014)

    Article  Google Scholar 

  30. V. Kumar, E.V. Shah, D.R. Roy, Electronic properties of hexagonal gallium phosphide: a DFT investigation. AIP Conf. Proc. 1731, 1–4 (2016). https://doi.org/10.1063/1.4948098

    Article  Google Scholar 

  31. C. Lee, C. Hill, N. Carolina, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Chem. Phys. Lett. 162, 165–169 (1989). https://doi.org/10.1016/0009-2614(89)85118-8

    Article  Google Scholar 

  32. A.D. Becke, Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact-exchange mixing. J. Chem. Phys. 104, 1040–1046 (1996). https://doi.org/10.1063/1.470829

    Article  CAS  Google Scholar 

  33. R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople, Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 72, 650–654 (1980). https://doi.org/10.1063/1.438955

    Article  CAS  Google Scholar 

  34. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N.J. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision B.01. (Gaussian, Inc, Wallingford, 2009).

  35. K. Nejati, A. Hosseinian, A. Bekhradnia, E. Vessally, L. Edjlali, Na-ion batteries based on the inorganic BN nanocluster anodes: DFT studies. J. Mol. Graph. Model. 74, 1–7 (2017). https://doi.org/10.1016/j.jmgm.2017.03.001

    Article  CAS  PubMed  Google Scholar 

  36. P. Weichi, L. Haiyang, Z. Xuejing, Z. Wenming, S. Ebrahimi, AlN nanotubes and nanosheets as anode material for K-ion batteries: DFT studies. Phys. Lett. Sect. A 384, 126396 (2020). https://doi.org/10.1016/j.physleta.2020.126396

    Article  CAS  Google Scholar 

  37. A. Hosseinian, S. Soleimani-amiri, S. Arshadi, E. Vessally, L. Edjlali, Boosting the adsorption performance of BN nanosheet as an anode of Na-ion batteries: DFT studies. Phys. Lett. Sect. A 381, 2010–2015 (2017). https://doi.org/10.1016/j.physleta.2017.04.022

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are sincerely thankful to “Bioinformatics resources and applications facility (BRAF), C-DAC, Pune” for providing the computational facilities for this work. Also, we acknowledge the workstation support from Computer Technology Centre (CTC) at KITS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abiram Angamuthu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duraisamy, P.D., Paul, S.P.M., Gopalan, P. et al. A DFT Study of Halogen (F, Cl, and Br) Encapsulated Ga12X12 (X = N, P, and As) Nanocages for Sodium-Ion Batteries. J Inorg Organomet Polym 32, 4173–4185 (2022). https://doi.org/10.1007/s10904-022-02425-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-022-02425-7

Keywords

Navigation